Alpha-lipoic acid enhances short-term spatial memory of mice in open-space forced swim-induced depression mouse model
DOI:
https://doi.org/10.31117/neuroscirn.v4i3.75Keywords:
Alpha-lipoic acid, Fluoxetine, Depression, Open-space forced swim test, Spatial short-term memory, Immobility timeAbstract
Depression affects over 264 million people of all ages globally. Major depressive disorder significantly and chronically reduced quality of life by its association with functional impairment both at home and in the workplace. Depressive patients consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Several studies have shown that alpha-lipoic acid (ALA) possesses mitochondrial, antioxidant, anti-inflammatory and anti-diabetic properties, indicating a basis for evaluating the efficacy of ALA in depression. Hence, this research aimed to assess the possible anti-depressant effect of ALA in mice exposed to the open space forced swim test (OSFST) model of depression. Twenty-five (25) Swiss albino mice were grouped into five groups (n=5). Group 1: [Normal saline (NS)], Groups 2, 3 and 4 received graded doses of ALA 100, 200 and 400 mg/kg, respectively, Group 5 received fluoxetine 20 mg/kg orally. The animals were subjected to OSFST, novel object recognition test (NORT) and Y-maze test. Serotonin, brain-derived neurotrophic factor (BDNF), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase levels of the mice were assessed. Treatment with ALA and fluoxetine significantly decreased immobility time compared to NS group in OSFST (p<0.05). Also, ALA at doses of 200 & 400 mg/kg and fluoxetine 20 mg/kg significantly increased spontaneous alternation ratio in the Y-maze test compared to the normal saline group (p<0.05), however, no significant difference was observed in novel object recognition using NORT between NS, ALA and fluoxetine treated groups. Similarly, the level of serotonin, SOD and catalase were not altered between the ALA and fluoxetine treated groups and NS group. In contrast, fluoxetine 20 mg/kg increased the brain BDNF level of the mice (p<0.05). Alpha-lipoic acid ameliorated depression in the OSFST murine model of depression and improved their cognition. Thus ALA can be a promising candidate in the development of novel anti-depressant medication.
References
Akbari, M., Ostadmohammadi, V., Lankarani, K. B., Tabrizi, R., Kolahdooz, F., Khatibi, S. R., & Asemi, Z. (2018). The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism, 87, 56-69. https://doi.org/10.1016/j.metabol.2018.07.002
Baldessarini, R. J., Vázquez, G. H., & Tondo, L. (2020). Bipolar depression : a major unsolved challenge. International Journal of Bipolar Disorders, 8, 1–13. https://doi.org/10.1186/s40345-019-0160-1
Bist, R., & Kumar, D. (2009). The evaluation of effect of alpha-lipoic acid and vitamin E on the lipid peroxidation , gamma-amino butyric acid and serotonin level in the brain of mice ( Mus musculus ) acutely intoxicated with lindane. Journal of the Neurological Sciences, 276(2009), 99–102. https://doi.org/10.1016/j.jns.2008.09.008
Bortolato, B., Miskowiak, K. W., Köhler, C. A., Maes, M., Fernandes, B. S., Berk, M., & Carvalho, A. F. (2016). Cognitive remission: a novel objective for the treatment of major depression ? BMC Medicine, 14(9), 1–18. https://doi.org/10.1186/s12916-016-0560-3
Brennan, B. P., John, Þ., Jensen, E., Hudson, Þ. J. I., Coit, C. E., Beaulieu, A., Pope, H. G., Renshaw, P. F., & Cohen, B. M. (2013). A placebo-controlled trial of acetyl-L-carnitine and α-lipoic acid in the treatment of bipolar depression. Journal of Clinical Psychopharmacology, 33(5), 627–635. https://doi.org/10.1097/JCP.0b013e31829a83f5
Brown, J. M., Stewart, J. C., Stump, T. E., & Callahan, C. M. (2011). Risk of coronary heart disease events over 15 years among older adults with depressive symptoms. American Journal of Geriatric Psychiatry, 19(8), 721–729. https://doi.org/10.1097/JGP.0b013e3181faee19
Calheiros, M., Silva, C., Nádia, C., & Sousa, S. De. (2013). Augmentation therapy with alpha-lipoic acid and desvenlafaxine: A future target for treatment of depression? Naunyn-Schmiedeberg's Archives of Pharmacology, 386, 685–695. https://doi.org/10.1007/s00210-013-0867-y
Çekici, H., & Bakırhan, Y. E. (2018). Potential therapeutic agent in psychiatric and neurological diseases: alpha lipoic acid. Acta Psychopathologica, 4(2), 1–6. https://doi.org/10.4172/2469-6676.100165
Choi, K., Park, M., Kim, H., Kim, K., Kim, H., Kim, J., Kim, B., Kim, M., Park, J., & Cho, K. (2015). Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Molecular Brain, 8(9), 1–16. https://doi.org/10.1186/s13041-015-0101-6
Darcet, F., Gardier, A. M., Gaillard, R., David, D. J., & Guilloux, J. P. (2016). Cognitive dysfunction in major depressive disorder. A translational review in animal models of the disease. Pharmaceuticals, 9(1), 1–42. https://doi.org/10.3390/ph9010009
DeSousa, S. C. N., Meneses, N. L., Vasconcelos, S. G., daSilva, Márcia Calheiros Macêdo, D., DeLucena, D. F., & Vasconcelos, S. M. M. (2015). Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine : Emphasis on the neurotrophic hypothesis of depression. Psychiatry Research, 2015, 1–9. https://doi.org/10.1016/j.psychres.2015.08.042
Dong, K., Hao, P., Xu, S., Liu, S., Zhou, W., Yue, X., Rausch-FAN, X., & Liu, Z. (2017). Alpha-lipoic acid alleviates high-glucose Ssuppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K / Akt signaling pathway. Cellular Physiology and Biochemistry, 42, 1897–1906. https://doi.org/10.1159/000479605
Farr, S. A., Price, T. O., Banks, W. A., Ercal, N., Morley, J. E., Medicine, G., Louis, S., Louis, S., Louis, S., & Louis, S. (2012). Effect of alpha-lipoic acid on memory , oxidation , and lifespan in SAMP8 mice. Journal of Alzheimer's Disease, 32(2012), 447–455. https://doi.org/10.3233/JAD-2012-120130
Filho, M. H. N. R., Sousa, C. N. S. De, Meneses, L. N., Vasconcelos, G. S., Silva, M. C. C., Patrocínio, M. C. A., Filho, L. C. O., Oliveira, T. Q., Júnior, M. A. S., & Vasconcelos, S. M. M. (2014). Antidepressant effect of alpha-lipoic acid : Brain-derived Neurotrophic Factor such as a new target for resistant depression. European Neuropsychopharmacology, 24(Suppl 2), 81–82. https://doi.org/10.1016/S0924-977X(14)70393-1
Giacobbo, B. L., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., & Vries, E. F. J. De. (2018). Brain-derived neurotrophicfactor in brain disorders: focus on neuroinflammation. Molecular Neurobiology, 2018, 1–18. https://doi.org/10.1007/s12035-018-1283-6
Habila, N., H.M. Inuwa, Aimola, I. A., Lasisi, O. I., Muhammad, A., A., I. O., & Williams, I. S. (2012). Acetylcholinesterase activity in the brain and blood of mice infected with Naja nigricolis venom. Biological Segment, 3(1), 5–14.
Hashimoto, K. (2019). Rapid-acting anti-depressant ketamine , its metabolites and other candidates: A historical overview and future perspective. Psychiatry and Clinical Neurosciences, 73, 613–627. https://doi.org/10.1111/pcn.12902
Karaarslan, U., İşgüder, R., Bağ, Ö., Kışla, M., & Ağın, H. (2013). Alpha lipoic acid intoxication , treatment and outcome. Clinical Toxicology, 51(6), 522–522. https://doi.org/10.3109/15563650.2013.801983
Karafakioğlu, Y. S. (2018). Effects of α lipoic acid on noise induced oxidative stress in rats. Saudi Journal of Biological Sciences, 2018(August), 1–21. https://doi.org/10.1016/j.sjbs.2018.08.008
Katerji, M., Filippova, M., & Duerksen-hughes, P. (2019). Approaches and methods to measure oxidative stress in clinical samples : research applications in the cancer field. Oxidative Medicine and Cellular Longevity, 2019, 1–29. https://doi.org/10.1155/2019/1279250
Khalifa, E. A., Ahmed, A. N., Hashem, K. S., & Allah, A. G. (2020). Therapeutic effects of the combination of alpha-lipoic acid ( ALA ) and coenzyme Q10 ( CoQ10 ) on cisplatin-induced nephrotoxicity. International Journal of Inflammation, 2020, 1–11. https://doi.org/10.1155/2020/5369797
Kodydková, J., Vávrová, L., Zeman, M., Jirák, R., Macá, J., Sta, B., & Tvrzická, E. (2009). Antioxidative enzymes and increased oxidative stress in depressive women. Clinical Biochemistry, 42(2009), 1368–1374. https://doi.org/10.1016/j.clinbiochem.2009.06.006
Kurumazuka, D., Kitada, K., Tanaka, R., Mori, T., Ohkita, M., Takaoka, M., & Matsumura, Y. (2019). α-Lipoic acid exerts a primary prevention for the cardiac dysfunction in aortocaval fistula-created rat hearts. Heliyon, 5(2019), e02371. https://doi.org/10.1016/j.heliyon.2019.e02371
Liu, B., Liu, J., Wang, M., Zhang, Y., & Li, L. (2017a). From serotonin to neuroplasticity: Evolvement of theories for major depressive disorder. Frontiers in Cellular Neuroscience, 11(September), 1–9. https://doi.org/10.3389/fncel.2017.00305
Liu, X., Zhang, J., Sun, D., Fan, Y., Zhou, H., & Fu, B. (2014). Effects of fluoxetine on brain-derived neurotrophic factor serum concentration and cognition in patients with vascular dementia. Clinical Interventions in Aging, 2014(9), 411–419. https://doi.org/10.2147/CIA.S58830
Liu, Z., Patil, I., Sancheti, H., Yin, F., & Cadenas, E. (2017b). Effects of lipoic acid on high-fat diet-induced alteration of synaptic plasticity and brain glucose metabolism : A PET / CT and 13 C-NMR study. Scientific Reports, December 2016, 1–13. https://doi.org/10.1038/s41598-017-05217-z
Manda, K., Ueno, M., & Anzai, K. (2008). Memory impairment, oxidative damage and apoptosis induced by space radiation: Ameliorative potential of alpha lipoic acid. Behavioural Brain Research, 187(2008), 387–395. https://doi.org/10.1016/j.bbr.2007.09.033
Marcia, C. C. S., Caren-Nadia, S. S., Patrícia, X. L. G., Gersilene, V. O., Fernanda, Y. R. A., Naiara, C. X., Jéssica, C. S., German, S. V., Luzia, K. A. M. L., Danielle, M., & Silvania, M. M. V. (2016). Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Progress in Neuro-Psychopharmacology Biological Psychiatry, 64, 142-148. https://doi.org/10.1016/j.pnpbp.2015.08.002
Mendoza-núñez, V. M., García-martínez, B. I., Rosado-pérez, J., Santiago-osorio, E., & Pedraza-chaverri, J. (2019). The effect of 600 mg alpha-lipoic acid supplementation on oxidative stress, inflammation, and RAGE in older adults with Type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2019, 1–12. https://doi.org/10.1155/2019/3276958
Mônica, Í., Santos, D. S., Lyne, R., & Freitas, M. De. (2010). Alterations on monoamines concentration in rat hippocampus produced by lipoic acid. Arq Neuropsiquiatr, 68(3), 362–366. https://doi.org/10.1590/s0004-282x2010000300006
Nádia, C., Sousa, S. De, Meneses, L. N., Vasconcelos, G. S., Medeiros, S., Calheiros, M., Silva, C., Mouaffak, F., Kebir, O., Manuel, C., Leite, S., Cláudio, M., Patrocinio, A., Macedo, D., Maria, S., & Vasconcelos, M. (2018). Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2018, 1–15. https://doi.org/10.1007/s00210-018-1509-1
Okanović, A., Prnjavorac, B., Jusufović, E., & Sejdinović, R. (2015). Alpha-lipoic acid reduces body weight and regulates triglycerides in obese patients with diabetes mellitus. Medicinski Glasnik, 12(2), 96–101. https://doi.org/10.17392/798-15
Oliveiraa, T. de Q., DeSousaa, C. N. S., Vasconcelosa, G. S., DeSousaa, L. C., DeOliveiraa, A. A., Patrocíniob, C. F. V., Medeiros, I. da S., Júnior, J. E. R. H., Maes, M., Macedo, D., & Vasconcelos, S. M. M. (2017). Brain antioxidant effect of mirtazapine and reversal of sedation by its combination with alpha-lipoic acid in a model of depression induced by corticosterone. Journal of Affective Disorders, 05(22), 1–31. https://doi.org/10.1016/j.jad.2017.05.022
Paula, A., Visentin, V., Colombo, R., Scotton, E., Fracasso, D. S., Ribeiro, A., Branco, C. S., & Salvador, M. (2020). Targeting inflammatory-mitochondrial response in major depression: current evidence and further challenges. Oxidative Medicine and Cellular Longevity, 2020, 1–20. https://doi.org/10.1155/2020/2972968
Rodriguez-perdigon, M., Solas, M., Moreno-aliaga, M. J., & Javier, M. (2016). Lipoic acid improves neuronal insulin signalling and rescues cognitive function regulating VGlut1 expression in high-fat-fed rats : Implications for Alzheimer' s disease. BBA - Molecular Basis of Disease, 1862(4), 511–517. https://doi.org/10.1016/j.bbadis.2016.01.004
Rybka, J., Kornelia, K., Bana, P., Majsterek, I., Carvalho, L. A., Cattaneo, A., & Anacker, C. (2013). Interplay between the pro-oxidant and antioxidant systems and proin fl ammatory cytokine levels , in relation to iron metabolism and the erythron in depression. Free Radical Biology and Medicine, 63, 187–194. https://doi.org/10.1016/j.freeradbiomed.2013.05.019
Salazar, M. R. (2000). Alpha lipoic acid : a novel treatment for depression. Medical Hypotheses, 55(6), 510–512. https://doi.org/10.1054/mehy.2000.1103
Salehi, B., Yılmaz, Y. B., Antika, G., Tumer, T. B., Mahomoodally, M. F., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., & Sharopov, F. (2019). Insights on the use of α -lipoic acid for therapeutic purposes. Biomolecules, 9(356), 1–25. https://doi.org/10.3390/biom9080356
Saraswathy, G., Maheswari, E., & Santhrani, T. (2015). Protective effect of alpha lipoic acid against phenytoin induced behavioral abnormalities in rats. Journal of Molecular Biomarkers & Diagnosis, 6(4), 1–10. https://doi.org/10.4172/2155-9929.1000241
Schweizer, S., Kievit, R. A., Emery, T., & Henson, R. N. (2018). Symptoms of depression in a large healthy population cohort are related to subjective memory complaints and memory performance in negative contexts. Psychological Medicine, 48(1), 104–114. https://doi.org/10.1017/S0033291717001519
Serafini, G. (2012). Neuroplasticity and major depression, the role of modern anti-depressant drugs. World Journal of Psychiatry, 2(3), 49–57. https://doi.org/10.5498/wjp.v2.i3.49
Silva, G., Coelho, N., Nádia, C., Sousa, S. De, Queiroz, T. De, Ladislau, L., Lima, L., Freitas, D., Lucena, D., Severino, C., Macêdo, D., Maria, S., & Vasconcelos, M. (2015). Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophrenia Research, 2015, 1–8. https://doi.org/10.1016/j.schres.2015.04.017
Spielman, L. J., Little, J. P., & Klegeris, A. (2014). Inflammation and insulin / IGF-1 resistance as the possible link between obesity and neurodegeneration. Journal of Neuroimmunology, 273(2014), 8–21. https://doi.org/10.1016/j.jneuroim.2014.06.004
Stone, E. A., & Lin, Y. (2011). Open-space forced swim model of depression for mice. Curr Protoc Neurosci., 5740, 1–12. https://doi.org/10.1002/0471142301.ns0936s54.Open-Space
Stuart, M. J., & Baune, B. T. (2012). Depression and type 2 diabetes : inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neuroscience and Biobehavioral Reviews, 36(1), 658–676. https://doi.org/10.1016/j.neubiorev.2011.10.001
Thur, K. E., Nelson, A. J. D., & Cassaday, H. J. (2014). Ro 04-6790-induced cognitive enhancement : No effect in trace conditioning and novel object recognition procedures in adult male Wistar rats. Pharmacology, Biochemistry and Behavior, 127, 42–48. https://doi.org/10.1016/j.pbb.2014.10.006
Tsai, M., & Huang, T. (2016). Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Research, 30; 235, 38-42. https://doi.org/10.1016/j.psychres.2015.12.005
Triggiani, L. (2020). Potential therapeutic effects of alpha lipoic acid in memory disorders. Progress in Nutrition, 22(1), 12–19. https://doi.org/10.23751/pn.v22i1.9341
Uchida, R., Okamoto, H., Ikuta, N., Terao, K., & Hirota, T. (2015). Enantioselective pharmacokinetics of α-lipoic acid in rats. International Journal of Molecular Sciences, 16, 22781–22794. https://doi.org/10.3390/ijms160922781
Vallianou, N., Evangelopoulos, A., & Koutalas, P. (2009). Alpha-lipoic acid and diabetic neuropathy. The Review of Diabetic Studies, 6(4), 230–236. https://doi.org/10.1900/RDS.2009.6.230
Veskovic, M., Mladenovic, D., Jorgacevic, B., Stevanovic, I., & Luka, S. De. (2014). Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency. Experimental Biology and Medicine 2014;, 0, 1–8. https://doi.org/10.1177/1535370214549521
Volchegorskiĭ, I. A., Rassokhina, L. M., Koliadich, M. I., & Alekseev, M. I. (2011). Comparative study of alpha-lipoic acid and mexidol effects on affective status, cognitive functions and quality of life in diabetes mellitus patients]. Eksperimental’naia i Klinicheskaia Farmakologiia, 74(11), 17—23. http://europepmc.org/abstract/MED/22288155
WHO. (2017). Depression and other common mental disorders: global health estimates. World Health Organization. https://apps.who.int/iris/bitstream/10665/254610/1/WHO₋MSD₋MER₋2017.2
WHO. (2021). Key facts - Depression. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/depression?
Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-frolinger, T., & Anika, M. (2016). A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6 / Tg2576 Mice. PLoS ONE, 11(1), 1–23. https://doi.org/10.1371/journal.pone.0147733
Wroolie, T. E., Williams, K. E., Keller, J., Zappert, L. N., Shelton, S. D., Kenna, H. A., Reynolds, M. F., & Rasgon, N. L. (2006). Mood and neuropsychological changes in women with midlife depression treated with escitalopram. Journal of Clinical Psychopharmacology, 26(4), 361–366. https://doi.org/10.1097/01.jcp.0000227699.26375.f8
Yau, J. L. W., Mcnair, K. M., Noble, J., Brownstein, D., Hibberd, C., Morton, N., Mullins, J. J., Morris, R. G. M., Cobb, S., & Seckl, J. R. (2007). Enhanced hippocampal long-term potentiation and spatial learning in aged 11 B-hydroxysteroid dehydrogenase Type 1 knock-out mice. The Journal of Neuroscience, 27(39), 10487–10496. https://doi.org/10.1523/JNEUROSCI.2190-07.2007
Zalejska-fiolka, J., N, T. W., Jr, W. R., Natalia, D., Strzelczyk, J. K., Kasperczyk, A., Owczarek, A., Urszula, B. B., Kasperczyk, S. B., Stawiarska-pi, B., Birkner, E., & Gamian, A. (2015). The influence of α-lipoic acid and garlic administration on biomarkers of oxidative stress and inflammation in rabbits exposed to oxidized nutrition oils. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/827879
Zatta, P., Zambenedetti, P., Kilyen, M., & Kiss, T. (2002). In vivo and in vitro effects of aluminium on the activity of mouse brain acetylcholinesterase. Brain Research Bulletin, 59(1), 41–45. https://doi.org/10.1016/s0361-9230(02)00836-5
Zemdegs, J., Rainer, Q., Grossmann, C. P., Rousseau-ralliard, D., Grynberg, A., Ribeiro, E., & Guiard, B. P. (2018). Anxiolytic- and antidepressant-like effects of fish oil-enriched diet in brain-derived neurotrophic factor deficient mice. Frontiers in Neuroscience, 12, 1–16. https://doi.org/10.3389/fnins.2018.00974
Zhao, R., Xu, F., Xu, X., Tan, G., Liu, L., Wu, N., Zhang, W., & Liu, J. (2015). Effects of alpha-lipoic acid on spatial learning and memory , oxidative stress , and central cholinergic system in a rat model of vascular dementia. Neuroscience Letters, 587, 113–119. https://doi.org/10.1016/j.neulet.2014.12.037
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Yusuf Yusha'u, Umar Muhammad Adam, Alhassan Abdul Wahab, Malajiya Ibrahim Alhaji Saleh, Jamilu Ya’u

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.