Task absorption and job demands: exploring task performance through neural and pupillary data
DOI:
https://doi.org/10.31117/neuroscirn.v8i2.390Keywords:
Absorption, Task performance, Job demands, Resources, EpisodesAbstract
This study investigates the relationship between task characteristics, episodic absorption, and performance, based on the job demands-resources theory. Given that modern tasks often require processing substantial data and making real-time decisions, they demand significant attentional focus. Absorption, defined as a temporary state of deep attentional engagement, is thought to enhance task performance and efficiency. To explore this, we conducted an n-back task with participants, a task that requires focused, voluntary attentional control. Physiological and neural data were collected, with a particular focus on pupillary dynamics and the P300 wave, an event-related potential marker associated with attentional and cognitive processes. The study aimed to test three hypotheses: (a) absorption, as a temporary cognitive state, enhances performance and task efficiency; (b) absorption episodes are linked to activation in the P300 wave and pupillary responses; and (c) task demands and resources significantly impact the occurrence of absorption episodes. Specifically, we expected high job demands coupled with high resources to result in frequent absorption episodes, while high demands with low resources and low demands with high resources would lead to fewer episodes. Findings from this research may provide insights into how task design and resource allocation influence cognitive engagement, shedding light on optimal work conditions that foster absorption and improve performance. This research has potential applications in designing tasks and environments that promote sustained attentional engagement, ultimately contributing to more effective, resource-aligned organizational practices.
References
Ares, G., Giménez, A., Bruzzone, F., Antúnez, L., Sapolinski, A., Vidal, L., & Maiche, A. (2012). Attentional capture and understanding of nutrition labelling: a study based on response times. International Journal of Food Sciences and Nutrition, 63(6), 679–688. https://doi.org/10.3109/09637486.2011.652598
Astudillo, C., Muñoz, K., & Maldonado, P. E. (2018). Emotional content modulates attentional visual orientation during free viewing of natural images. Frontiers in Human Neuroscience, 12, 459. https://doi.org/10.3389/fnhum.2018.00459
Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273–285. https://doi.org/10.1037/ocp0000056
Bakker, A. B., Schaufeli, W. B., Leiter, M. P., & Taris, T. W. (2008). Work engagement: an emerging concept in occupational health psychology. Work & Stress, 22(3), 187–200. https://doi.org/10.1080/02678370802393649
Barker, R. G. (1968). Ecological psychology: concepts and methods for studying the environment of human behavior. Stanford University Press, United States. https://ci.nii.ac.jp/ncid/BA02966004
Beal, D. J., Weiss, H. M., Barros, E., & MacDermid, S. M. (2005). An episodic process model of affective influences on performance. Journal of Applied Psychology, 90(6), 1054–1068. https://doi.org/10.1037/0021-9010.90.6.1054
Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (2nd ed., pp. 142–162). Cambridge University Press, United Kingdom. https://psycnet.apa.org/record/2000-03927-005
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65–73. https://doi.org/10.1016/j.coph.2008.12.014
Bluedorn, A. C., Kaufman, C. F., & Lane, P. M. (1992). How many things do you like to do at once? An introduction to monochronic and polychronic time. Academy of Management Perspectives, 6(4), 17–26. https://doi.org/10.5465/ame.1992.4274453
Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus‐medial frontal cortex interplay during learning. European Journal of Neuroscience, 20(3), 791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.x
Bridgeman, B. (1992). Conscious vs unconscious processes. Theory & Psychology, 2(1), 73–88. https://doi.org/10.1177/0959354392021004
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and FMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47. https://doi.org/10.1162/08989290051137585
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306–324. https://doi.org/10.1016/j.neuron.2008.04.017
Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1988). Optimal experience: psychological studies of flow in consciousness. Cambridge University Press, United Kingdoms. https://doi.org/10.1017/CBO9780511621956
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer Publishing, United States. https://doi.org/10.1007/978-1-4899-2271-7
Demerouti, E. (2020). Turn digitalization and automation to a job resource. Applied Psychology, 71(4), 1205–1209. https://doi.org/10.1111/apps.12270
Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-resources model of burnout. Journal of Applied Psychology, 86(3), 499–512. https://doi.org/10.1037/0021-9010.86.3.499
Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: Analyses and review. Journal of Experimental Psychology General, 140(4), 552–572. https://doi.org/10.1037/a0023885
Donchin, E. (1981). Surprise!… Surprise? Psychophysiology, 18(5), 493–513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357–374. https://doi.org/10.1017/s0140525x00058027
Ehinger, B. V., & Dimigen, O. (2019). Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based EEG analysis. PeerJ, 7, e7838. https://doi.org/10.7717/peerj.7838
Gaillard, F. D. (2001). Understanding the digital divide as it relates to electronic commerce [Doctoral Dissertation, Old Dominion University]. https://doi.org/10.25777/fwjk-v127
Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T., Lin, C., Liao, L., & Makeig, S. (2011). Cognition in action: imaging brain/body dynamics in mobile humans. Reviews in the Neurosciences, 22(6), 593–608. https://doi.org/10.1515/rns.2011.047
Hinojosa, J., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: a meta-analysis. Neuroscience & Biobehavioral Reviews, 55, 498–509. https://doi.org/10.1016/j.neubiorev.2015.06.002
Hirst, W., & Kalmar, D. (1987). Characterizing attentional resources. Journal of Experimental Psychology General, 116(1), 68–81. https://doi.org/10.1037/0096-3445.116.1.68
Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: a cognitive-energetical framework. Biological Psychology, 45(1–3), 73–93. https://doi.org/10.1016/s0301-0511(96)05223-4
Hockey, G. R. J., Gaillard, A. W. K., & Coles, M. G. H. (1986). Energetics and human information processing. Springer Dordrecht, Netherlands. https://doi.org/10.1007/978-94-009-4448-0
Hopstaken, J. F., Van Der Linden, D., Bakker, A. B., & Kompier, M. A. J. (2014). A multifaceted investigation of the link between mental fatigue and task disengagement. Psychophysiology, 52(3), 305–315. https://doi.org/10.1111/psyp.12339
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2015). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. https://doi.org/10.1016/j.neuron.2015.11.028
Just, M. A., Carpenter, P. A., & Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1–2), 56–88. https://doi.org/10.1080/14639220210159735
Juyumaya, J. E. (2019). Utrecht work engagement scale in Chile: measurement, reliability and validity. Estudios De Administración, 26(1), 35–50. https://doi.org/10.5354/0719-0816.2019.55405
Juyumaya, J. E., Torres, J. P., & Maldonado, P. (2024). Shifts in task absorption during decision-making episodes. Scientific Reports, 14, 25277. https://doi.org/10.1038/s41598-024-75921-0
Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33(4), 692–724. https://doi.org/10.5465/256287
Kee, Y. H., & Wang, C. J. (2007). Relationships between mindfulness, flow dispositions and mental skills adoption: A cluster analytic approach. Psychology of Sport and Exercise, 9(4), 393–411. https://doi.org/10.1016/j.psychsport.2007.07.001
Keller, J. (2016). The flow experience revisited: the influence of skills-demands-compatibility on experiential and physiological indicators. In Harmat L., Ørsted Andersen F., Ullén F., Wright J., Sadlo G. (Eds.), Flow Experience (pp. 351–374). Springer Cham, Switzerland. https://doi.org/10.1007/978-3-319-28634-1_21
Krucien, N., Ryan, M., & Hermens, F. (2017). Visual attention in multi-attributes choices: What can eye-tracking tell us? Journal of Economic Behavior & Organization, 135, 251–267. https://doi.org/10.1016/j.jebo.2017.01.018
Kühnel, J., Sonnentag, S., & Bledow, R. (2011). Resources and time pressure as day‐level antecedents of work engagement. Journal of Occupational and Organizational Psychology, 85(1), 181–198. https://doi.org/10.1111/j.2044-8325.2011.02022.x
Locke, E. A., & Latham, G. P. (1991). A theory of goal setting and task performance. Academy of Management Review, 16(2), 480–483. https://doi.org/10.2307/258875
Lupano Perugini, M. L. & Waisman. S. (2018). Work engagement and its relationship with performance and job satisfaction. Revista psicodebate: Psychology, Culture, and Society, 18(2), 77–89. https://doi.org/10.18682/pd.v18i2.808
Mathôt, S. (2020). Tuning the senses: how the pupil shapes vision at the earliest stage. Annual Review of Vision Science, 6(1), 433–451. https://doi.org/10.1146/annurev-vision-030320-062352
Munakata, Y., Casey, B., & Diamond, A. (2004). Developmental cognitive neuroscience: progress and potential. Trends in Cognitive Sciences, 8(3), 122–128. https://doi.org/10.1016/j.tics.2004.01.005
Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the Foundations of Positive Psychology (pp. 239–263). Springer Dordrecht, Netherlands. https://doi.org/10.1007/978-94-017-9088-8_16
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510–532. https://doi.org/10.1037/0033-2909.131.4.510
Olichney, J., Xia, J., Church, K. J., & Moebius, H. J. (2022). Predictive power of cognitive biomarkers in neurodegenerative disease drug development: utility of the P300 event-related potential. Neural Plasticity, 2022, 1–13. https://doi.org/10.1155/2022/2104880
Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349(6304), 61–64. https://doi.org/10.1038/349061a0
Pfeiffer, B., Daly, B. P., Nicholls, E. G., & Gullo, D. F. (2014). Assessing sensory processing problems in children with and without attention deficit hyperactivity disorder. Physical & Occupational Therapy in Pediatrics, 35(1), 1–12. https://doi.org/10.3109/01942638.2014.904471
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
Posner, M. I., & Driver, J. (1992). The neurobiology of selective attention. Current Opinion in Neurobiology, 2(2), 165–169. https://doi.org/10.1016/0959-4388(92)90006-7
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325
Raichle, M. E. (2009). A paradigm shift in functional brain imaging. Journal of Neuroscience, 29(41), 12729–12734. https://doi.org/10.1523/jneurosci.4366-09.2009
Salanova, M., Bakker, A. B., & Llorens, S. (2006). Flow at work: evidence for an upward spiral of personal and organizational resources. Journal of Happiness Studies, 7(1), 1–22. https://doi.org/10.1007/s10902-005-8854-8
Sánchez, R., Maria, A., Gallego, E. C., Soria, M. S., & Aborg, C. (2008). Technoflow among spanish and swedish students : a confirmatory factor multigroup analysis. Annals of Psychology, 24(1), 42–48. http://redined.mecd.gob.es/xmlui/handle/11162/86412?show=full
Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of work engagement with a short questionnaire. Educational and Psychological Measurement, 66(4), 701–716. https://doi.org/10.1177/0013164405282471
Schneider, W., & Fisk, A. D. (1982). Concurrent automatic and controlled visual search: can processing occur without resource cost? Journal of Experimental Psychology Learning Memory and Cognition, 8(4), 261–278. https://doi.org/10.1037/0278-7393.8.4.261
Schwab, K. (2017). The Fourth Industrial Revolution. Penguin Books, United Kingdom.
Sheldon, A. D., Saad, E., Sahan, M. I., Meyering, E. E., Starrett, M. J., LaRocque, J. J., Rose, N. S., & Postle, B. R. (2021). Attention biases competition for visual representation via dissociable influences from frontal and parietal cortex. Journal of Cognitive Neuroscience, 33(4), 739–755. https://doi.org/10.1162/jocn_a_01672
Sheldon, K. M., Prentice, M., & Halusic, M. (2014). The experiential incompatibility of mindfulness and flow absorption. Social Psychological and Personality Science, 6(3), 276–283. https://doi.org/10.1177/1948550614555028
Tadić, M., Bakker, A. B., & Oerlemans, W. G. M. (2014). Challenge versus hindrance job demands and well‐being: a diary study on the moderating role of job resources. Journal of Occupational and Organizational Psychology, 88(4), 702–725. https://doi.org/10.1111/joop.12094
Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2462. https://doi.org/10.1126/science.1068788
Tozman, T., Magdas, E. S., MacDougall, H. G., & Vollmeyer, R. (2015). Understanding the psychophysiology of flow: a driving simulator experiment to investigate the relationship between flow and heart rate variability. Computers in Human Behavior, 52, 408–418. https://doi.org/10.1016/j.chb.2015.06.023
Tsukahara, J. S., Harrison, T. L., & Engle, R. W. (2016). The relationship between baseline pupil size and intelligence. Cognitive Psychology, 91, 109–123. https://doi.org/10.1016/j.cogpsych.2016.10.001
Vail, D. A., & Bluedorn, A. C. (2003). The human organization of time: temporal realities and experience. Contemporary Sociology a Journal of Reviews, 32(6), 768–769. https://doi.org/10.2307/1556691
Van Der Linden, D., Tops, M., & Bakker, A. B. (2020). Go with the flow: a neuroscientific view on being fully engaged. European Journal of Neuroscience, 53(4), 947–963. https://doi.org/10.1111/ejn.15014
Veldhuizen, I., Gaillard, A., & De Vries, J. (2003). The influence of mental fatigue on facial EMG activity during a simulated workday. Biological Psychology, 63(1), 59–78. https://doi.org/10.1016/s0301-0511(03)00025-5
Weiss, H. M., Ashkanasy, N. M., & Beal, D. J. (2004). Attentional and regulatory mechanisms of momentary work motivation and performance. In J. P. Forgas, K. D. Williams, & S. M. Laham (Eds.), Social Motivation: Conscious and Unconscious Processes (pp. 314–331). Cambridge University Press, United Kingdom.
Wohltjen, S., & Wheatley, T. (2024). Interpersonal eye-tracking reveals the dynamics of interacting minds. Frontiers in Human Neuroscience, 18, 1356680. https://doi.org/10.3389/fnhum.2024.1356680
Wyble, B., Folk, C., & Potter, M. C. (2012). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology Human Perception & Performance, 39(3), 861–871. https://doi.org/10.1037/a0030517
Yang, J., & Yang, M. (2016). Top-down visual saliency via joint CRF and dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(3), 576–588. https://doi.org/10.1109/tpami.2016.2547384
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Jesus Juyumaya, Andrea Leal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.