Prospective stem cell lines as in vitro neurodegenerative disease models for natural product research

  • Nur Izzati Mansor (1) Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (2) Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Nuratiqah Azmi (1) Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (2) Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • King Hwa Ling (1) Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (2) Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Rozita Rosli (1) Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (2) Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (3) UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
  • Norshariza Nordin (1) Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. (2) Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
Keywords: Neurodegenerative diseases, natural products, stem cell, in vitro ND models

Abstract

The use of in vitro model for screening pharmacological compounds or natural products has gained global interest.  The choice of cells to be manipulated plays a vital role in coming up with the best-suited model for specific diseases, including neurodegenerative diseases (ND). A good in vitro ND model should provide appropriate morphological and molecular features that mimic ND conditions where it can be used to screen potential properties of natural products in addition to unravelling the molecular mechanisms of ND.  In this mini review, we intend to demonstrate two prospective stem cell lines as the potential cell source for in vitro ND model and compare them to the commonly used cells.  The common source of cells that have been used as the in vitro ND models is discussed before going into details talking about the two prospective stem cell lines.

References

Adjaye J, Huntriss J, Herwig R, Benkahla A, Brink TC, Wierling C, et al. Primary Differentiation in the Human Blastocyst: Comparative Molecular Portraits of Inner Cell Mass and Trophectoderm Cells. Stem Cells. 2005;23(10):1514-1525. https://doi.org/10.1634/stemcells.2005-0113

Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. In Vitro Model for Neuroscience : Differentiation of SH-SY5Y Cells into Cells with Morphological and Biochemical Characteristics of Mature Neurons. J Alzheimers Dis. 2010;20(4):1069-1082. https://doi.org/doi:10.3233/JAD-2010-091363

Agrawal M, Kumar V, Kashyap M, Khanna V, Randhawa G, Pant A. Ischemic insult induced apoptotic changes in PC12 cells : Protection by trans resveratrol. Eur J Pharmacol. 2011;666(1-3):5-11. https://doi.org/10.1016/j.ejphar.2011.05.015

Agrawal M, Kumar V, Singh A, Kashyap M, Khanna V, Siddiqui M, et al. trans -Resveratrol Protects Ischemic PC12 Cells by Inhibiting the Hypoxia Associated Transcription Factors and Increasing the Levels of Antioxidant Defense Enzymes. ACS Chem Neurosci. 2013;4:285-294. https://doi.org/doi:10.1021/cn300143m

Ahn SM, Choi YW, Shin HK, Choi BT. New four-herb formula ameliorates memory impairments via neuroprotective effects on hippocampal cells. J Life Sci. 2016;26(4):475-483. https://doi.org/10.5352/JLS.2016.26.4.475

Alvira D, Folch J, Verdaguer E, Canudas AM, Camins A. Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex i and potassium deprivation in cerebellar neurons. Neuroscience. 2007;147(3):746-756. https://doi.org/10.1016/j.neuroscience.2007.04.029

Angeles ADL, Xi R, Hochedlinger K, Jaenisch R. Hallmarks of pluripotency. Nature. 2015;525(7570):469-478. https://doi.org/10.1038/nature15515

Aubert J, Stavridis MP, Tweedie S, Reilly MO, Vierlinger K, Li M, et al. Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1 - gfp knock-in mice. PNAS. 2003;100(Suppl 1):11836-11841. https://doi.org/10.1073/pnas.1734197100

Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126-140. https://doi.org/10.1101/gad.224503.derm

Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb D. Embryonic stem cells express neuronal properties in vitro. [Internet]. Vol. 168, Developmental biology. 1995. p. 342-357. https://doi.org/10.1006/dbio.1995.1085

Biedler JL, Roffler-tarlov S, Schachner M, Freedman LS. Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. Cancer Res. 1978;38(11 pt 1):2-5.

Boyer LA, Lee TI, Cole MF, Johnstone SE, Stuart S, Zucker JP, et al. Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell. 2005;122(6):947-956. https://doi.org/10.1016/j.cell.2005.08.020

Cananzi M, Atala A, Coppi P De. Stem cells derived from amniotic fluid : new potentials in regenerative medicine. Reprod Biomed Online. 2009;18(1):17-27. https://doi.org/10.1016/S1472-6483(10)60111-3

Carolindah M, Rosli R, Adam A, Nordin N. An Overview of in Vitro Research Models for Alzheimer’S Disease (Ad). Regen Res. 2013;2(2):8-13.

Chao J, Li H, Cheng K., Yu M., Chang R., Wang M. Protective effects of pinostilbene , a resveratrol methylated derivative , against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. J Nutr Biochem. 2010;21(6):482-489. https://doi.org/10.1016/j.jnutbio.2009.02.004

Chen C, Jang J, Li M, Surh Y. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells . Biochem Biophys Res Commun 2005. 2005;331(4):993-1000. https://doi.org/10.1016/j.bbrc.2005.03.237

Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol. 2009;41(6):1284-1295. https://doi.org/10.1016/j.biocel.2008.10.029

Chen X, Zhang Q, Cheng Q, Ding F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem. 2009;332(1-2):85-93. https://doi.org/10.1007/s11010-009-0177-3

Chen Z, Lu Y, Wang Z, Tao X, Wei D. Protective Effects of Salidroside on Hypoxia/Reoxygenation Injury by Sodium Hydrosulfite in PC12 Cells. Pharm Biol. 2007;45(8):604-512. https://doi.org/10.1080/13880200701538666

Choi Y-S, Lee M-C, Kim H-S, Lee K-H, Park Y-G, Kim H-K, et al. Neurotoxicity screening in a multipotent neural stem cell line established from the mouse brain. J Korean Med Sci. 2010;25(3):440-448. https://doi.org/10.3346/jkms.2010.25.3.440

Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm. 2007;72:17-28. https://doi.org/doi:10.1007/978-3-211-73574-9_3

Cooper O, Seo H, Andrabi S, Guardia-laguarta C, Sundberg M, Mclean JR, et al. Familial Parkinson’s disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued. Sci Transl Med . 2012;4(141):1-25. https://doi.org/10.1126/scitranslmed.3003985.Familial

Coppi P De, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100-106. https://doi.org/10.1038/nbt1274

Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug : a review of preclinical research. Expert Rev Neurother. 2016;16(6):671-680. https://doi.org/10.1080/14737175.2016.1175303

De Andrade DVG, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, et al. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res. 2008;1198:188-196. https://doi.org/10.1016/j.brainres.2008.01.006

Delacourte A, Sergeant N, Buée L. In vitro models of age-related neurodegenerative disorders. Exp Gerontol. 2003;38(11-12):1309-1317. https://doi.org/10.1016/j.exger.2003.09.010

Dikmen M, Kaya-tilki E, Engur S, Ozturk Y. Neuritogenic activity of epigallocatechin gallate and curcumin combination on rat adrenal pheochromocytoma cells. Fresenius Environ Bull. 2017;26(7):4726-4733.

Eistetter HR. Pluripotent Embryonal Stem Cell Lines Can Be Established from Disaggregated Mouse Morulae. Dev Growth Differ. 1989;31(3):275-282. https://doi.org/10.1111/j.1440-169X.1989.00275.x

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-156. https://doi.org/10.1038/292154a0

Eves EM, Tucker MS, Robacko JD, Downen M, Rosner MR, Wainer BH. Immortal rat hippocampal cell lines exhibit neuronal and glial lineages and neurotrophin gene expression. Neurobiology. 1992;89(10):4373-4377. https://doi.org/10.1073/pnas.89.10.4373

Fonfria E, Marshall I, Boyfield I, Skaper S, Hughes J, Owen D, et al. Amyloid β-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005;95(3):715-723. https://doi.org/10.1111/j.1471-4159.2005.03396.x

Gao L, Zhou W, Symmes B, Freed CR. Re-cloning the N27 dopamine cell line to improve a cell culture model of Parkinson’s disease. PLoS One. 2016;11(8):1-18. https://doi.org/10.1371/journal.pone.0160847

Gong Q, Wang Q, Shi J, Huang X, Liu Q, Ma H. Inhibition of caspases and intracellular free Ca2+ concentrations are involved in resveratrol protection against apoptosis in rat primary neurons culture. Acta Pharmacol Sin. 2007;28(11):1724-1730. https://doi.org/10.1111/j.1745-7254.2007.00666.x

Guo M, Suo Y, Gao Q, Du H, Zeng W, Wang Y. The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF- α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Helliyon. 2015;1(1):1-16. https://doi.org/10.1016/j.heliyon.2015.e00020

Hadjantonakis A, Papaioannou V. The stem cells of early embryos. Differentiation. 2001;68(4-5):159-166. https://doi.org/10.1046/j.1432-0436.2001.680403.x

Hua J, Yin N, Yang B, Zhang J, Ding J, Fan Y, et al. Ginkgolide B and bilobalide ameliorate neural cell apoptosis in α -synuclein aggregates. Biomed Pharmacother. 2017;96(October):792-797. https://doi.org/10.1016/j.biopha.2017.10.050

Huang H, Xu K, Jang Z. Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis. 2019;32(4):2-3. https://doi.org/10.3233/JAD-2012-120688

Jang J, Surh Y. Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma ( PC12 ) cells. Mutat Res. 2001;496:181-190. https://doi.org/10.1016/S1383-5718(01)00233-9

Joshi C, Enver T. Molecular complexities of stem cells . Curr Opin Hematol. 2003;10(3):220-228. https://doi.org/10.1097/00062752-200305000-00005

Kang SS, Lee JY, Choi YK, Kim GS, Han BH. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg Med Chem Lett. 2004;14(9):2261-2264. https://doi.org/10.1016/j.bmcl.2004.02.003

Kitamura Y, Inden M, Miyamura A, Kakimura J, Taniguchi T, Shimohama S. Possible involvement of both mitochondria- and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells . Neurosci Lett. 2002;333(1):25-28. https://doi.org/doi:10.1016/S0304-3940(02)00964-3

Kitazawa A, Shimizu N. Differentiation of Mouse Embryonic Stem Cells into Neurons Using Conditioned Medium of Dorsal Root Ganglia. J Biosci Bioeng. 2005;100(1):94-99. https://doi.org/10.1263/jbb.100.94

Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells. Neural Regen Res. 2013;8(6):485-495. https://doi.org/10.3969/j.issn.1673-5374.2013.06.001

Kwon Y-W, Chung Y-J, Kim J, Lee H-J, Park J, Roh T-Y, et al. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One. 2014;9(1):e85736. https://doi.org/10.1371/journal.pone.0085736

Li M, Chang C, Han Y, Liao C, Yu J. Ginkgolide B promotes neuronal differentiation through the Wnt / β - catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep. 2018;8(14947):1-10. https://doi.org/10.1038/s41598-018-32960-8

Liu B, Hong J. Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. J Pharmacol Exp Ther. 2003;304(1):1-7. https://doi.org/10.1124/jpet.102.035048.logical

Liu D, Wang Z, Gao Z, Xie K, Zhang Q, Jiang H, et al. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res. 2014;1(271):116-121. https://doi.org/10.1016/j.bbr.2014.05.068

Loebel DAF, Watson CM, Young RA De, Tam PPL. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol. 2003;264(1):1-14. https://doi.org/10.1016/S0012-1606(03)00390-7

Loh Y, Wu Q, Chew J, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431-440. https://doi.org/10.1038/ng1760

Mao X, Zhou H, Li X, Liu Z. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF / TrkB- Dependent PI3K / Akt / mTOR Signaling Pathway. Cell Mol Neurobiol. 2016;36:915-925. https://doi.org/10.1007/s10571-015-0276-5

Marambaud P, Zhao H, Davies P. Resveratrol Promotes Clearance of Alzheimer ’ s Disease Amyloid- β Peptides. J Biol Chem. 2005;280(45):37377-37382. https://doi.org/10.1074/jbc.M508246200

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell. 2003;113(5):631-642. https://doi.org/10.1016/S0092-8674(03)00393-3

Mun-Fun H, Ferdaos N, Hamzah NS, Ridzuan N, Hisham NA, Abdullah S, et al. Rat Full Term Amniotic Fluid Harbors Highly Potent Stem Cells. Res Vet Sci. 2015;102:89-99. https://doi.org/10.1016/j.rvsc.2015.07.010

Nam S, Choi J, Yoo D, Kim W, Jung H, Kim J, et al. Effects of Curcumin (Curcuma longa) on Learning and Spatial Memory as Well as Cell Proliferation and Neuroblast Differentiation in Adult and Aged Mice by Upregulating Brain-Derived Neurotrophic Factor and CREB Signaling. J Med Food. 2014;17(6):641-649. https://doi.org/10.1089/jmf.2013.2965

Okello E, McDougall G, Kumar S, Seal C. In vitro protective effects of colon-available extract of Camellia sinensis (tea) against hydrogen peroxide and beta-amyloid (Aβ (1-42)) induced cytotoxicity in differentiated PC12 cells. Phytomedicine. 2011;18(2011):691-696. https://doi.org/10.1016/j.phymed.2010.11.004

Otsu M, Sai T, Nakayama T, Murakami K, Inoue N. Uni-directional differentiation of mouse embryonic stem cells into neurons by the neural stem sphere method. Neurosci Res. 2011;69(4):314-321. https://doi.org/10.1016/j.neures.2010.12.014

Outten JT, Gadue P, French DL. High-throughput screening assay for embryoid body differentiation of human embryonic stem cells. Curr Protoc Stem Cell Biol. 2012;1:1-17. https://doi.org/10.1002/9780470151808.sc01d06s20

Oyama Y, Chikahisa L. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain res. 1996;712:349-352. https://doi.org/10.1016/0006-8993(95)01440-3

Pauklin S, Pedersen R a, Vallier L. Mouse pluripotent stem cells at a glance. J Cell Sci. 2011;124:3727-3732. https://doi.org/10.1242/jcs.074120

Pevny LH, Nicolis SK. Sox2 roles in neural stem cells. Int J Biochem Cell Biol. 2010;42(3):421-424. https://doi.org/10.1016/j.biocel.2009.08.018

Phlman S, Abrahamsson L, Mattsson M, Esscher T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells : a comparison with phorbolester-induced. Cell Differ 1. 1984;14(2):135-144.

Qu Z, Zhou Y, Zeng Y, Lin Y, Li Y, Zhong Z, et al. Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat. PLoS One. 2012;7(1):1-17. https://doi.org/10.1371/journal.pone.0029641

Rodda SJ, Kavanagh SJ, Rathjen JOY, Rathjen PD. Embryonic stem cell differentiation and the analysis of mammalian development. Int J Dev Biol. 2002;46(4):449-458.

Sánchez-Reus MI, Peinado II, Molina-Jiménez MF, Benedí J. Fraxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Neurosci Res. 2005;53(1):48-56. https://doi.org/10.1016/j.neures.2005.05.009

Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, et al. Curcumin Protects an SH-SY5Y Cell Model of Parkinson’s Disease Against Toxic Injury by Regulating HSP90. Cell Physiol Biochem. 2018;51:681-691. https://doi.org/10.1159/000495326

Silva J, Nichols J, Theunissen TW, Guo G, Oosten AL Van, Barrandon O, et al. Nanog Is the Gateway to the Pluripotent Ground State. Cell. 2009;138(4):722-737. https://doi.org/10.1016/j.cell.2009.07.039

Smith A, Heath J, Donaldson D, Wong G, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1989;336:688-690. https://doi.org/10.1038/336688a0

Song J, Cheon SY, Jung W, Lee WT, Lee JE. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia. Int J Mol Sci. 2014;15:15512-15529. https://doi.org/10.3390/ijms150915512

Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol : A Focus on Several Neurodegenerative Diseases. Oxid Med Cell Longev. 2015;2015:1-14. https://doi.org/10.1155/2015/392169

Torrent R, De Angelis Rigotti F, Dell’Era P, Memo M, Raya A, Consiglio A. Using iPS Cells toward the Understanding of Parkinson’s Disease. J Clin Med. 2015;4(4):548-566. https://doi.org/10.3390/jcm4040548

Tsai M, Lee J, Chang Y, Hwang S. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic ¯ uid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450-1456. https://doi.org/10.1093/humrep/deh279

Wang C, Lou Y, Xu J, Xu J, Feng Z, Chen Y, et al. Endoplasmic Reticulum Stress and NF- κ B Pathway in Salidroside Mediated Neuroprotection : Potential of Salidroside in Neurodegenerative Diseases. Am J Chin Med. 2017;45(1-17). https://doi.org/10.1142/S0192415X17500793

Wang M, Huang H, HsiehSJ, Jeng K, Kuo J. Resveratrol inhibits interleukin-6 production in cortical mixed glial cells under hypoxia/hypoglycemia followed by reoxygenation. J Neuroimmunol 2001. 2001;112(1-2):28-34. https://doi.org/10.1016/S0165-5728(00)00374-X

Wang Z, Oron E, Nelson B, Razis S, Ivanova N. Distinct Lineage Specification Roles in Human Embryonic Stem Cells. Stem Cell. 2012;10(4):440-454. https://doi.org/10.1016/j.stem.2012.02.016

Weitzer G. Embryonic StemCell-Derived Embryoid Bodies: An In Vitro Model of Eutherian Pregastrulation Development and Early Gastrulation. Handb Exp Pharmacol. 2006;174:21-51. https://doi.org/10.1007/3-540-31265-X_2

Williams RSB, Bate C. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology. 2015;101:1-10. https://doi.org/10.1016/j.neuropharm.2015.06.013

Wu D-M, Han X-R, Wen X, Wang S, Fan S-H, Zhuang J, et al. Salidroside Protection Against Oxidative Stress Injury Through the Wnt / β- Catenin Signaling Pathway in Rats with Parkinson ’ s Disease. Cell Physiol Biochem. 2018;46(5):1793-1806. https://doi.org/10.1159/000489365

Xiao Q, Wang C, Li J, Hou Q, Li J, J M, et al. Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25 - 35 partly via up-regulation of brain- derived neurotrophic factor. Eur J Pharmacol. 2019;647(1-3):48-54. https://doi.org/10.1016/j.ejphar.2010.08.002

Xiao X, Wang R, Han Y, Tang X. Protective effects of huperzine A on beta-amyloid ( 25-35 ) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett. 2000;286(3):155-158. https://doi.org/10.1016/S0304-3940(00)01088-0

Xiao X, Wang R, Tang X. Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res. 2000;61(5):564-569. https://doi.org/10.1002/1097-4547(20000901)61

Xiao X, Zhang H, Tang X. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res. 2002;67(1):30-36. https://doi.org/10.1002/jnr.10075

Xie H, Hu L, Li G. SH-SY5Y human neuroblastoma cell line : in vitro cell model of dopaminergic neurons in Parkinson ’ s disease . Chin Med J (Engl). 2010;123(8):1086-1092. https://doi.org/doi:10.3760/cma.j.issn.0366-6999.2010.08.021

Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012;33:578-587. https://doi.org/10.1038/aps.2012.3

Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. Modeling familial Alzheimer ’ s disease with induced pluripotent stem cells. Hum Mol Genet. 2011;20(23):4530-4539. https://doi.org/10.1093/hmg/ddr394

Yamazaki M, Chiba K. Neurotrophic Effects of Genipin on Neuro2a Cells. J Heal Sci. 2005;51(6):687-692. https://doi.org/10.1248/jhs.51.687

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin Inhibits Formation of Amyloid Oligomers and Fibrils , Binds Plaques , and Reduces Amyloid in Vivo. J Biol Chem. 2005;280(7):5892-5901. https://doi.org/10.1074/jbc.M404751200

Yang Y, Gupta S, Kim K, Powers B, Cerqueira A, Wainger B, et al. A Small Molecule Screen in Stem Cell-derived Motor Neurons Identifies a Kinase Inhibitor as a Candidate Therapeutic for ALS. Cell Stem Cell. 2013;12(6):713-726. https://doi.org/10.1016/j.stem.2013.04.003.A

Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21(2):183-186. https://doi.org/10.1038/nbt780

Yu S, Liu M, Gu X, Ding F. Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cell Mol Neurobiol. 2008;28(8):1067-1078. https://doi.org/10.1007/s10571-008-9284-z

Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T. Curcumin Improves Amyloid β -Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway. PLoS One. 2015;10(6):1-17. https://doi.org/10.1371/journal.pone.0131525

Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol. 2007;564(1-3):18-25. https://doi.org/10.1016/j.ejphar.2007.01.089

Zhang L, Yu H, Zhao X, Lin X, Tan C, Cao G, et al. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int. 2010;57(5):547-555. https://doi.org/10.1016/j.neuint.2010.06.021

Zhao Z-Y, Luan P, Huang S-X, Xiao S-H, Zhao J, Zhang B, et al. Edaravone protects HT22 neurons from H2O2-induced apoptosis by inhibiting the MAPK signaling pathway. CNS Neurosci Ther. 2013;19(3):163-169. https://doi.org/10.1111/cns.12044

Published
2019-03-23
How to Cite
Mansor, N. I., Azmi, N., Ling, K. H., Rosli, R., Hassan, Z. and Nordin, N. (2019) “Prospective stem cell lines as in vitro neurodegenerative disease models for natural product research”, Neuroscience Research Notes, 2(1), pp. 16-30. doi: 10.31117/neuroscirn.v2i1.25.
Section
Mini Review