Automated classification of eight different Electroencephalogram (EEG) bands using hybrid of Fast Fourier Transform (FFT) with machine learning methods

Authors

  • Nur Shahirah Md Nor School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
  • Nurul Hashimah Ahamed Hassain Malim School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
  • Nur Aqilah Paskhal Rostam School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
  • J Joshua Thomas UOW Malaysia, KDU Penang University College, 10400 Pulau Pinang, Malaysia.
  • Mohamad Azmeer Effendy Centre for Drug Research, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v5i1.116

Keywords:

Electroencephalogram (EEG) Analysis, Time Series Classification, Fast Fourier Transform (FFT), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)

Abstract

Analysing and processing the EEG dataset is crucial. Countless actions have been taken to ensure that the researcher in brain studies always achieves informative data and produces notable findings. There are several standard procedures to produce an informative result in analysing the EEG data. However, the techniques used in each standard procedure might be different for the researcher or data analyst because they have their preferences to suit the purpose of their experiments to adapt with the dataset collected. Not only the current manual method is time-consuming, but the main challenges are that researchers need to analyse only a small portion of the brain signals that are the most relevant to be observed through the analysis of several bands such as Very low, Delta, Theta, Alpha-1, Alpha-2, Beta-1, Beta-2, and Gamma. Therefore, one of the best alternatives is to automate the process of classifying the eight bands and extract the most relevant features. Hence, this paper proposed an automated classification method and feature extraction method through hybridising Fast Fourier Transform (FFT) with three different machine learning methods (KNN, SVM, and ANN) that can improve the efficiency of EEG analysis. Based on the result, the FFT + SVM method gives a 100% accuracy and successfully classified the bands into different of eight EEG bands accurately.

References

Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of eeg signal features extraction using linear analysis in frequency and time-frequency domains. International Scholarly Research Notices 2014, 1–7. https://doi.org/10.1155/2014/730218

Al-Janabi, O. M., Malim, N. H. A. H., & Cheah, Y. N. (2018). Analogy-based common-sense knowledge for opinion-target identification and aggregation. 2018 2nd International Conference on Imaging, Signal Processing and Communication, ICISPC 2018, 1–5. https://doi.org/10.1109/ICISPC44900.2018.9006687

Al-Janabi, O. M., Malim, N. H. A. H., & Cheah, Y. N. (2020). Aspect categorisation using domain-trained word embedding and topic modelling. Lecture Notes in Electrical Engineering, 619, 191–198. https://doi.org/10.1007/978-981-15-1289-6_18

Almustafa, K. M. (2020). Prediction of heart disease and classifiers' sensitivity analysis. BMC Bioinformatics, 21(1), 1–18. https://doi.org/10.1186/s12859-020-03626-y

Andre, A. B., Beltrame, E., & Wainer, J. (2013). A combination of support vector machine and k-nearest neighbors for machine fault detection. Applied Artificial Intelligence, 27(1), 36–49. https://doi.org/10.1080/08839514.2013.747370

Anusha, K. S., Mathews, M. T., & Puthankattil, S. D. (2012). Classification of normal and epileptic EEG signal using time amp; Frequency domain features through artificial neural network. Proceedings - 2012 International Conference on Advances in Computing and Communications, ICACC 2012, 98–101. https://doi.org/10.1109/ICACC.2012.21

Anwar, H., Khan, Q. U., Nadeem, N., Pervaiz, I., Ali, M., & Cheema, F. F. (2020). Epileptic seizures. Discoveries Journal, 8(2), 1–19. https://doi.org/ 10.15190/d.2020.7

Asadur Rahman, M., Foisal Hossain, M., Hossain, M., & Ahmmed, R. (2020). Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egyptian Informatics Journal, 21(1), 23–35. https://doi.org/10.1016/j.eij.2019.10.002

Auria, L., & Moro, R. A. (2011). Support Vector Machines (SVM) as a Technique for Solvency Analysis. DIW Berlin Discussion Paper No. 811. https://doi.org/10.2139/ssrn.1424949

Balaji, A., Haldar, A., Patil, K., Ruthvik, T. S., Ca, V., Jartarkar, M., & Baths, V. (2017). EEG-based classification of bilingual unspoken speech using ANN. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1022–1025. https://doi.org/10.1109/EMBC.2017.8037000

Barranco-Gutiérrez, A. I. (2020). Machine learning for brain images classification of two language speakers. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/9045456

Bastos, N. S., Marques, B. P., Adamatti, D. F., & Billa, C. Z. (2020). Analysing EEG signals using decision trees: a study of modulation of amplitude. Computational Intelligence and Neuroscience, 2020. 1-11. https://doi.org/10.1155/2020/3598416

Berbić, J., Ocvirk, E., Carević, D., & Lončar, G. (2017). Application of neural networks and support vector machine for significant wave height prediction. Oceanologia, 59(3), 331–349. https://doi.org/10.1016/j.oceano.2017.03.007

Chan, A., Early, C. E., Subedi, S., Li, Y., & Lin, H. (2015). Systematic analysis of machine learning algorithms on EEG data for brain state intelligence. Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015, 793–799. https://doi.org/10.1109/BIBM.2015.7359788

Chao, H., Dong, L., Liu, Y., & Lu, B. (2020). Improved deep feature learning by synchronisation measurements for multi-channel eeg emotion recognition. Complexity, 2020, 1-15. https://doi.org/10.1155/2020/6816502

Chriskos, P., Kaitalidou, D. S., Karakasis, G., Frantzidis, C., Gkivogkli, P. T., Bamidis, P., & Kourtidou-Papadeli, C. (2017). Automatic sleep stage classification applying machine learning algorithms on eeg recordings. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2017-June, 435–439. https://doi.org/10.1109/CBMS.2017.83

Chu, N. N. (2017). IEEE and CTA's work toward neurotech standards for EEG data. IEEE Consumer Electronics Magazine, 6(4), 137–139. https://doi.org/10.1109/MCE.2017.2714298

Dhanapal, R. and Bhanu, D. (2020). Electroencephalogram classification using various artificial neural networks, Journal of Critical Reviews, 7(4), 891–894. ttps://doi.org/10.31838/jcr.07.04.170

Duffy, F. H. (1981). Brain electrical activity mapping (BEAM): Computerised access to complex brain function. International Journal of Neuroscience, 13(1), 55–65. https://doi.org/10.3109/00207458108991795

Gárate-Escamila, A. K., El Hassani, A.H., & Andrès, E. (2020). Classification models for heart disease prediction using feature selection and PCA. Informatics in Medicine Unlocked, 19, 100330. https://doi.org/10.1016/j.imu.2020.100330

Giannakaki, K., Giannakakis, G., Farmaki, C., & Sakkalis, V. (2017). Emotional state recognition using advanced machine learning techniques on EEG data. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2017-June(July), 337–342. https://doi.org/10.1109/CBMS.2017.156

Heideman, M. T., Johnson, D. H., & Burrus, C. S. (1984). Gauss and the history of the fast fourier transform. IEEE ASSP Magazine, 1(4), 14–21. https://doi.org/10.1109/MASSP.1984.1162257

Imandoust, S. B., & Bolandraftar, M. (2013). Application of K-Nearest Neighbor ( KNN ) approach for predicting economic events : theoretical background. International Journal of Engineering Research and Applications, 3(5), 605–610.

Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of heart disease using K- nearest neighbor and genetic algorithm. Procedia Technology, 10, 85–94. https://doi.org/10.1016/j.protcy.2013.12.340

Javeed, A., Rizvi, S. S., Zhou, S., Riaz, R., Khan, S. U., & Kwon, S. J. (2020). Heart risk failure prediction using a novel feature selection method for feature refinement and neural network for classification. Mobile Information Systems, 2020, 1-11. https://doi.org/10.1155/2020/8843115

Kim, D. K., Jeong, K. S., McKay, R. I. B., Chon, T. S., & Joo, G. J. (2012). Machine learning for predictive management: Short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks. International Journal of Environmental Research, 6(1), 95–108. https://doi.org/ 10.22059/ijer.2011.476

Kondo, S., Najm, I., Kunieda, T., Perryman, S., Yacubova, K., & Lüders, H. O. (2001). Electroencephalographic characterisation of an adult rat model of radiation-induced cortical dysplasia. Epilepsia, 42(10), 1221–1227. https://doi.org/10.1046/j.1528-1157.2001.38300.x

Kortelainen, J., Väyrynen, E., Jia, X., Seppänen, T., & Thakor, N. (2012). EEG-based detection of awakening from isoflurane anesthesia in rats. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, August, 4279–4282. https://doi.org/10.1109/EMBC.2012.6346912

Kumar, G., & Bhatia, P. K. (2014). A detailed review of feature extraction in image processing systems. International Conference on Advanced Computing and Communication Technologies, ACCT, 5–12. https://doi.org/10.1109/ACCT.2014.74

Kumari, C. K.,Premsai, K., Gowri, M.S.,Kumar,K.S.,& Murthy, K.N. (2019). Human Emotions Classification using EEG

Signals in Virtual Instrumentation Platform. International Journal of Recent Technology and Engineering (IJRTE),November, 8(4), 12104-12107. https://doi.org/10.35940/ijrte.D8598.118419

Lan, Z., Sourina, O., Wang, L., Scherer, R., & Müller-Putz, G. (2017). Unsupervised feature learning for EEG-based emotion recognition. Proceedings - 2017 International Conference on Cyberworlds, CW 2017 - in Cooperation with: Eurographics Association International Federation for Information Processing ACM SIGGRAPH, 2017-January, 182–185. https://doi.org/10.1109/CW.2017.19

Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K. R. (2011). Introduction to machine learning for brain imaging. NeuroImage, 56(2), 387–399. https://doi.org/10.1016/j.neuroimage.2010.11.004

Li, M., & Liu, K. (2020). Probabilistic prediction of significant wave height using dynamic Bayesian network and information flow. Water, 12(8), 2075. https://doi.org/10.3390/W12082075

Maksimenko, V. A., Kurkin, S. A., Pitsik, E. N., Musatov, V. Y., Runnova, A. E., Efremova, T. Y., Hramov, A. E., & Pisarchik, A. N. (2018). Artificial neural network classification of motor-related EEG: An increase in classification accuracy by reducing signal complexity. Complexity, 2018, 10. https://doi.org/10.1155/2018/9385947

Masruroh, A. H., Imah, E. M., & Rahmawati, E. (2019). Classification of emotional state based on EEG signal using AMGLVQ. Procedia Computer Science, 157, 552–559. https://doi.org/10.1016/j.procs.2019.09.013

Michel, C. M., Vuilleumier, P., & Van De Ville, D. (2019). Current opinions in brain imaging methods and applications. Brain Topography, 32(6), 923–925. https://doi.org/10.1007/s10548-019-00747-3

Mohammed, M., Khan, M. B., & Bashie, E. B. M. (2016). Machine Learning: Algorithms and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781315371658

Murugappan, M., Murugappan, S., Balaganapathy, B., & Gerard, C. (2014). Wireless EEG signals based Neuromarketing system using Fast Fourier Transform (FFT). Proceedings - 2014 IEEE 10th International Colloquium on Signal Processing and Its Applications, CSPA 2014, 25–30. https://doi.org/10.1109/CSPA.2014.6805714

Murugappan, Murugappan, Murugappan, S., & Zheng, B. S. (2013). Frequency band analysis of electrocardiogram (ECG) signals for human emotional state classification using discrete wavelet transform (DWT). Journal of Physical Therapy Science, 25(7), 753–759. https://doi.org/10.1589/jpts.25.753

Mustafa, M., & Lokman, N. A. A. (2014). Classification of Spike-wave Discharge with STFT Approach. Journal of Engineering and Technology (JET), 5(1), 11-20.

Nguyen, V. T. N., Huynh, V. T., & Nguyen, T. H. H. (2019). Electroencephalography analysis using neural network. NICS 2018 - Proceedings of 2018 5th NAFOSTED Conference on Information and Computer Science, 144–147. https://doi.org/10.1109/NICS.2018.8606797

Novakovic, J., Veljovi, A., Iiic, S., Papic, Z., & Tomovic, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics & Computer Science, 7(1), 39–46. Retrieved from https://www.uav.ro/applications/se/journal/index.php/TAMCS/article/view/158

Olden, J. D., & Jackson, D. A. (2002). Illuminating the "black box": Understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135–150. https://doi.org/10.1016/S0304-3800(02)00064-9

Petrovska, B., Zdravevski, E., Lameski, P., Corizzo, R., Štajduhar, I., & Lerga, J. (2020). Deep learning for feature extraction in remote sensing: A case-study of aerial scene classification. Sensors, 20(14), 1–22. https://doi.org/10.3390/s20143906

Sarmast, S. T., Abdullahi, A. M., & Jahan, N. (2020). Current classification of seizures and epilepsies: scope, limitations and recommendations for future action. Cureus, 12(9), e10549. https://doi.org/10.7759/cureus.10549

Selvaraj, J., Murugappan, M., Wan, K., & Yaacob, S. (2013). Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst. BioMedical Engineering Online, 12(1), 44. https://doi.org/10.1186/1475-925X-12-44

Shu, L., Yu, Y., Chen, W., Hua, H., Li, Q., Jin, J., & Xu, X. (2020). Wearable emotion recognition using heart rate data from a smart bracelet. Sensors (Switzerland), 20(3), 1–19. https://doi.org/10.3390/s20030718

Si, Y. (2020). Machine learning applications for electroencephalograph signals in epilepsy: a quick review. Acta Epileptologica, 2(5), 5–11. https://doi.org/10.1186/s42494-020-00014-0

Siuly, S., Li, Y., & Zhang, Y. (2016). Significance of EEG signals in medical and health research. In: EEG Signal Analysis and Classification (pp. 23–41). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-47653-7_2

Tzallas, A. T., Giannakeas, N., Zoulis, K. N., Tsipouras, M. G., Glavas, E., Tzimourta, K. D., Astrakas, L. G., & Konitsiotis, S. (2017). EEG classification and short-term epilepsy prognosis using brain computer interface software. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2017-June, 349–353. https://doi.org/10.1109/CBMS.2017.97

Xie, L. (2012). KNN Classification and Regression using SAS.

Xiong, Q., Zhang, X., Wang, W. F., & Gu, Y. (2020). A parallel algorithm framework for feature extraction of EEG signals on MPI. Computational and Mathematical Methods in Medicine, 2020, 9812019. https://doi.org/10.1155/2020/9812019

Downloads

Published

2022-03-02 — Updated on 2022-03-05

Versions

How to Cite

Md Nor, N. S., Malim, N. H. A. H., Paskhal Rostam, N. A., Thomas, J. J., Effendy, M. A., & Hassan, Z. (2022). Automated classification of eight different Electroencephalogram (EEG) bands using hybrid of Fast Fourier Transform (FFT) with machine learning methods. Neuroscience Research Notes, 5(1), 116. https://doi.org/10.31117/neuroscirn.v5i1.116 (Original work published March 2, 2022)