A preliminary fMRI study of relative clause in comprehension among native and non-native Malay language speakers

Authors

  • Nurul Bayti binti Sumardi Universiti Sains Malaysia, Kelantan, Malaysia.
  • Hui Ying Jong Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  • Aini Ismafairus Abd Hamid Universiti Sains Malaysia, Kelantan, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v5i1.113

Keywords:

fMRI, Neuroimaging, Sentence comprehension, Relative Clause

Abstract

This study investigates (a) whether there is a functional neural activation at the frontal and temporal brain regions during the comprehension of Malay relative clause (RC), and (b) the differences in the activated areas among native (L1) and non-native (L2) Malay language speakers. The subject relative clause (SRC), object relative clause (ORC), and subject-verb-object (SVO) were used as the study stimuli. Participants were asked to do a sentence-picture matching task during an fMRI measurement. The random-effect analysis (RFX) using two-way ANOVA was conducted for the fMRI data. The main effect of the group at the puncorrected < 0.001, cluster size > 20 voxels found that the comprehension of Malay relative clauses had activated frontal and temporal brain regions in L1 and L2. The multiple comparisons of L1>L2 showed a significant difference left-lateralised in the temporo-parietal region. While for L2>L1, the significant activations were indicated as distributed to the frontal, temporal, parietal, and occipital regions that lateralised to the right hemisphere. Conclusions: The findings suggested that the comprehension of Malay relative clauses had caused the activation at different brain regions amongst L1 and L2 groups. It was also found that both L1 and L2 groups showed their preference in SRC, the mean reaction time showed that they had a faster reaction time to comprehend SRC than ORC. The findings from this study can also be applied in clinical language intervention, and it is expected to benefit children and adults with speech and language disorders.

References

Arantzeta, M., Bastiaanse, R., Burchert, F., Wieling, M., Martine-Zabaleta, M., & Laka, I. (2017). Eye-tracking the effect of word order in sentence omprehension in apashia: evidence from Vasque, a free word order ergative language. Cognition and Neuroscience, 32 (10), 1320-1343. https://doi.org/10.1080/23273798.2017.1344715

Aziz, M. A. A., Hassan, M., Razak, R. A., & Garraffa, M. (2020). Syntactic abilities in Malay adult speakers with aphasia: a study on passive sentences and argument structures. Aphasiology, 34 (7), 886–904. https://doi.org/10.1080/02687038.2020.1742283

Bakar, N. A., Razak, R. A., & Woan, L. H. (2016). The acquisition of relative clause among Malay children: An initial study. GEMA Online Journal of Language Studies, 16(3), 145–165. https://doi.org/10.17576/gema-2016-1603-10

Barbeau, E. B., Chai, X. J., Chen, J. K., Soles, J., Berken, J., Baum, S., & Klein, D. (2017). The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study. Neuropsychologia, 98(October), 169-176. https://doi.org/10.1016/j.neuropsychologia.2016.10.003

Boulenger, V., Hauk, O., & Pulvermüller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19(8), 1905–1914. https://doi.org/10.1093/cercor/bhn217

Bulut, T., Cheng, S. K., Xu, K. Y., Hung, D. L., & Wu, D. H. (2018). Is there a processing preference for object relative clauses in Chinese? Evidence from ERPs. Frontiers in Psychology, 9 (JUL), 1–18. https://doi.org/10.3389/fpsyg.2018.00995

Chee, M. W. L., Venkatraman, V., Westphal, C., & Siong, S. C. (2003). Comparison of block and event-related fMRI designs in evaluating the word-frequency effect. Human Brain Mapping, 18(3), 186–193. https://doi.org/10.1002/hbm.10092

Chen, M., Ma, F., Wu, J, Li, S., Zhang, Z., Fu, Y., Lu, C., & Guo, T. (2020). Individual differences in language proficiency shape the neural plasticity of language control in bilingual language production. Journal of Neurolinguistics, 54, 100887. https://doi.org/10.1016/j.jneuroling.2020.100887

Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118 (2), 115–128. https://doi.org/10.1016/S0165-0270(02)00121-8

Federmeier, K. D., Wlotko, E. W., & Meyer, A. M. (2008). What’s “right” in language comprehension: Event-related potentials reveal right hemisphere language capabilities. Linguistics and Language Compass. https://doi.org/10.1111/j.1749-818X.2007.00042.x

Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011

Gerrits, R., Van der Haegen, L., Brysbaert, M., & Vingerhoets, G. (2019). Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex, 117, 196–204. https://doi.org/10.1016/j.cortex.2019.03.010

Gibson, E. (2000). Dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O’Neil (Eds.), Image, language, brain: Papers from the first mind articulation project symposium (pp. 95-126). Cambridge, MA: MIT Press.

Golestani, N., Alario, F. X., Meriaux, S., Le Bihan, D., Dehaene, S., & Pallier, C. (2006). Syntax production in bilinguals. Neuropsychologia, 44(7), 1029–1040. https://doi.org/10.1016/j.neuropsychologia.2005.11.009

Harding, E. E., Sammler, D., & Kotz, S. A. (2019). Attachment preference in auditory German sentences: Individual differences and pragmatic strategy. Frontiers in Psychology, 10(JUN), 1–10. https://doi.org/10.3389/fpsyg.2019.01357

Kamali, A., Sair, H. I., Radmanesh, A., & Hasan, K. M. (2014). Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/ arcuate fasciculus in the human brain. Neuroscience, 277, 577-583. https://doi.org/10.1016/j.neuroscience.2014.07.035

Karlsson, J., Jolles, D., Koornneef, A., van den Broek, P., & Van Leijenhorst, L. (2019). Individual differences in children’s comprehension of temporal relations: Dissociable contributions of working memory capacity and working memory updating. Journal of Experimental Child Psychology, 185, 1–18. https://doi.org/10.1016/j.jecp.2019.04.007

Krebs, J., Malaia, E., Wilbur, R. B., & Roehm, D. (2018). Subject preference emerges as cross-modal strategy for linguistic processing. Brain Research, 1691, 105–117. https://doi.org/10.1016/j.brainres.2018.03.029

Lee, Y. S., Min, N. E., Wingfield, A., Grossman, M., & Peelle, J. E. (2016). Acoustic richness modulates the neural networks supporting intelligible speech processing. Hearing Research, 333, 108–117. https://doi.org/10.1016/j.heares.2015.12.008

Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: re-balancing the sale. social cognitive and affective neurocience, 4 (4), 423-428. https://doi.org/10.1093/scan/nsp052

Liu, C., de Bruin, A., Jiao, L., Li, Z., & Wang, R. (2020). Second language learning tunes the language control network: a longitudinal fMRI study. Language, Cognition and Neuroscience, 0(0), 1–12. https://doi.org/10.1080/23273798.2020.1856898

Luthra, S. (2021). The Role of the Right Hemisphere in Processing Phonetic Variability Between Talkers. Neurobiology of Language, 2(1), 138–151. https://doi.org/10.1162/nol_a_00028

Meltzer, J. A., McArdle, J. J., Schafer, R. J., & Braun, A. R. (2010). Neural aspects of sentence comprehension: Syntactic complexity, reversibility, and reanalysis. Cerebral Cortex, 20(8), 1853–1864. https://doi.org/10.1093/cercor/bhp249

Middlebrooks, E. H., Yagmurlu, K., Szaflarski, J. P., Rahman, M., & Bozkurt, B. (2016). A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Functional Neuroradiology, 59(1), 69–87. https://doi.org/10.1007/s00234-016-1772-0

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Parker, D. B., & Razlighi, Q. R. (2019). The benefit of slice timing correction in common fMRI preprocessing pipelines. Frontiers in Neuroscience, 13(JUL). https://doi.org/10.3389/fnins.2019.00821

Pliatsikas, C., Johnstone, T., & Marinis, T. (2017). An fMRI study on the processing of long¬ distance wh-¬movement in a second language. A Journal of General Linguistics, 2. http://dx.doi.org/10.5334/gjgl.95

Połczyńska, M. M., Japardi, K., & Bookheimer, S. Y. (2017). Lateralizing language function with pre-operative functional magnetic resonance imaging in early proficient bilingual patients. Brain and Language, 170, 1-11. https://doi.org/10.1016/j.bandl.2017.03.002

Qi, Z., Han, M., Wang, Y., de los Angeles, C., Liu, Q., Garel, K., Perrachione, T. K. (2019). Speech processing and plasticity in the right hemisphere predict variation in adult foreign language learning. NeuroImage, 192, 76–87. https://doi.org/10.1016/j.neuroimage.2019.03.008

Qu, J., Qian, L., Chen, C., Xue, G., Li, H., Xie, P., & Mei, L. (2017). Neural pattern similarity in the left IFG and fusiform is associated with novel word learning. Frontiers in Human Neuroscience, 11(August), 1–11. https://doi.org/10.3389/fnhum.2017.00424

Riès, S. K., Dronkers, N. F., & Knight, R. T. (2016). Choosing words: Left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval. Annals of the New York Academy of Sciences, 1369 (1), 111–131. https://doi.org/10.1111/nyas.12993

Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension : An Activation Likelihood Estimation. Brain and Language, 141, 89–102. https://doi.org/10.1016/j.bandl.2014.11.012

Sato, M. (2020). Neuropsychologia The neurobiology of sex differences during language processing in healthy adults : A systematic review and a meta-analysis. Neuropsychologia, 140 (December 2019), 107404. https://doi.org/10.1016/j.neuropsychologia.2020.107404

Schaller, F., Weiss, S., & Müller, H. M. (2017). EEG beta-power changes reflect motor involvement in abstract action language processing. Brain and Language, 168, 95–105. https://doi.org/10.1016/j.bandl.2017.01.010

Sierpowska, J., Fernandez-Coello, A., Gomez-Andres, A., Camins, À., Castañer, S., Juncadella, M., & Rodríguez-Fornells, A. (2018). Involvement of the middle frontal gyrus in language switching as revealed by electrical stimulation mapping and functional magnetic resonance imaging in bilingual brain tumor patients. Cortex, 99(November), 78–92. https://doi.org/10.1016/j.cortex.2017.10.017

Slotnick, S. D. (2017). Cluster success: fMRI Inferences for spatial extent have acceptable false-positive rates. Cognitive Neurosciences, 8 (3), 150-155. https://doi.org/10.1080/17588928.2017.1319350

Sulpizio, S., Del Maschio, N., Fedeli, D., & Abutalebi, J. (2020). Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 108 (December 2019), 834–853. https://doi.org/10.1016/j.neubiorev.2019.12.014

Tian, L., Chen, H., Zhao, W., Wu, J., Zhang, Q., De, A., Parviainen, T. (2020). The role of motor system in action-related language comprehension in L1 and L2: An fMRI study. Brain and Language, 201(August 2019), 104714. https://doi.org/10.1016/j.bandl.2019.104714

Veale, J. F. (2014). Edinburgh Handedness Inventory - Short Form: A revised version based on confirmatory factor analysis. Laterality, 19 (2), 164–177. https://doi.org/10.1080/1357650X.2013.783045

Vogelzang, M., Thiel, C. M., Rosemann, S., Rieger, J. W., & Ruigendijk, E. (2020). Neural mechanisms underlying the processing of complex sentences: an fMRI study. Neurobiology of Language, 52 (2), 226–248. https://doi.org/10.1162/nol_a_00011

Walenski, M., Europa, E., Caplan, D., & Thompson, C. K. (2019). Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Human Brain Mapping, 40(8), 2275–2304. https://doi.org/10.1002/hbm.24523

Xiong, Y., & Newman, S. (2021). Both activation and deactivation of functional networks support increased sentence processing costs. NeuroImage, 117475. https://doi.org/10.1016/j.neuroimage.2020.117475

Xu, J., Wang, J., Fan, L., Li, H., Zhang, W., Hu, Q., & Jiang, T. (2015). Tractography-based parcellation of the human middle temporal gyrus. Scientific Reports, 5(November), 1–13. https://doi.org/10.1038/srep18883

Xu, K., & Duann, J. R. (2020). Brain connectivity in the left frontotemporal network dynamically modulated by processing difficulty: Evidence from Chinese relative clauses. PLoS ONE, 15(4), 1–17. https://doi.org/10.1371/journal.pone.0230666

Xu, K., Wu, D. H., & Duann, J. R. (2020a). Dynamic brain connectivity attuned to the complexity of relative clause sentences revealed by a single-trial analysis. NeuroImage, 217(July 2019), 116920. https://doi.org/10.1016/j.neuroimage.2020.116920

Xu, K., Wu, D. H., & Duann, J. R. (2020b). Enhanced left inferior frontal to left superior temporal effective connectivity for complex sentence comprehension: fMRI evidence from Chinese relative clause processing. Brain and Language, 200(December 2018), 104712. https://doi.org/10.1016/j.bandl.2019.104712

Zaidil, N. N., Ying, J. H., Begum, T., Al-Marri, F., Rauf, R. A., & Reza, F. (2019). Syntactic language processing among women - An EEG/ERP study of visual pictorial stimuli. 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018 - Proceedings, 520–522. https://doi.org/10.1109/IECBES.2018.8626694

Downloads

Published

2022-02-10

How to Cite

Sumardi, N. B. binti, Jong, H. Y., & Abd Hamid, A. I. (2022). A preliminary fMRI study of relative clause in comprehension among native and non-native Malay language speakers. Neuroscience Research Notes, 5(1), 113. https://doi.org/10.31117/neuroscirn.v5i1.113