The role of intonation in designing machinery for mental sports psychology
DOI:
https://doi.org/10.31117/neuroscirn.v8i3.449Keywords:
Intonation, Sport psychology, Neurocognition, Psychophysiology, Biofeedback, AI coaching, Voice modulationAbstract
Intonation – the variation in pitch, rhythm, and stress in speech – plays a crucial role in cognitive and emotional regulation, particularly in the field of sports psychology. This mini-review examines the role of intonation in designing machinery for mental sports psychology, focusing on three core areas: neurocognitive mechanisms, technological integration, and psychophysiological responses. We explore how the brain processes intonation, how it influences motivation and attention in athletes, and how emerging technologies are incorporating vocal cues for performance optimisation. Neurocognitive research reveals that intonation engages bilateral cortical and subcortical pathways, influencing attention, memory encoding, and motivation regulation. The amygdala and auditory cortex process emotional prosody, while Self Determination Theory (SDT) and Neurovisceral Integration models highlight the motivational and stress-modulating effects of tone of voice. Technological advancements leverage AI-driven coaching, neurofeedback systems, and VR-based training to integrate adaptive vocal cues that regulate athletes' arousal levels. Biofeedback tools and voice analysis systems now track stress and cognitive load via vocal markers, enabling personalised mental training. On a psychophysiological level, intonation directly affects heart rate, respiratory function, and hormonal responses, influencing athletes’ readiness, stress resilience, and performance outcomes. Studies show that energising intonations enhance physical output, while calming tones reduce anxiety and improve decision-making under pressure. Structured vocal guidance in imagery training, relaxation techniques, and pre-performance routines optimises arousal modulation for peak performance. Despite growing interest, the literature lacks an integrative framework that explicitly connects intonation-driven vocal modulation with neurocognitive and psychophysiological mechanisms in sport-specific contexts. We propose a conceptual model linking intonation to cognitive and physiological optimisation, emphasising coach-athlete communication, voice-based feedback, and real-time stress tracking. Future research should explore individualised voice training, multimodal integration with movement, and neuroadaptive intonation technologies to refine mental performance strategies in sports.
References
Aziz-Zadeh, L., Sheng, T., & Gheytanchi, A. (2010). Common premotor regions for the perception and production of prosody and correlations with empathy and prosodic ability. PLoS ONE, 5(1), e8759. https://doi.org/10.1371/journal.pone.0008759
Bach, D. R., Hurlemann, R., & Dolan, R. J. (2013). Unimpaired discrimination of fearful prosody after amygdala lesion. Neuropsychologia, 51(11), 2070–2074. https://doi.org/10.1016/j.neuropsychologia.2013.07.005
Bherer, L. (2015). Cognitive plasticity in older adults: Effects of cognitive training and physical exercise. Annals of the New York Academy of Sciences, 1337(1), 1–6. https://doi.org/10.1111/nyas.12668
Bigand, E., & Tillmann, B. (2015). Introduction to the neurosciences and music V: Cognitive stimulation and rehabilitation. Annals of the New York Academy of Sciences, 1337(1), vii–ix. https://doi.org/10.1111/nyas.12723
Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., Strauss, M. M., Hyman, S. E., & Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875–887. https://doi.org/10.1016/s0896-6273(00)80219-6
Budnik-Przybylska, D., Syty, P., Kaźmierczak, M., Przybylski, J., Doliński, Ł., Łabuda, M., Jasik, P., Kastrau, A., di Fronso, S., & Bertollo, M. (2024). Psychophysiological strategies for enhancing performance through imagery–skin conductance level analysis in guided vs. self-produced imagery. Scientific Reports, 14(1), 5197. https://doi.org/10.1038/s41598-024-55743-w
Blonder, L. X., Pickering, J. E., Heath, R. L., Smith, C. D., & Butler, S. M. (1995). Prosodic characteristics of speech pre and post right hemisphere stroke. Brain and Language, 51(2), 318–335. https://doi.org/10.1006/brln.1995.1065
Carbary, T. J., Patterson, J. P., & Snyder, P. J. (2000). Foreign accent syndrome following a catastrophic second injury: MRI correlates, linguistic and voice pattern analyses. Brain and Cognition, 43(1–3), 78–85. https://doi.org/10.1006/brcg.1999.1099
Cancelliere, A., & Kertesz, A. (1990). Lesion localization in acquired deficits of emotional expression and comprehension. Brain and Cognition, 13(2), 133–147. https://doi.org/10.1016/0278-2626(90)90046-q
Chuen, L., Sears, D., & McAdams, S. (2016). Psychophysiological responses to auditory change. Psychophysiology, 53(6), 891–904. https://doi.org/10.1111/psyp.12633
Collura, T. F. (2014). Technical foundations of neurofeedback (1st ed.). Routledge. https://doi.org/10.4324/9780203795132
Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(10), 2452–2460. https://doi.org/10.1016/j.clinph.2004.05.033
Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 2327–2330. https://doi.org/10.1109/IEMBS.2011.6090651
Fischer, H., Wright, C. I., Whalen, P. J., McInerney, S. C., Shin, L. M., & Rauch, S. L. (2003). Brain habituation during repeated exposure to fearful and neutral faces: a functional MRI study. Brain Research Bulletin, 59(5), 387–392. https://doi.org/10.1016/s0361-9230(02)00940-1
Fiveash, A., Bedoin, N., Gordon, R. L., & Tillmann, B. (2021). Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology, 35(8), 771–791. https://doi.org/10.1037/neu0000766
Flanagan, K., & Saikia, M. J. (2023). Consumer-grade electroencephalogram and functional near-infrared spectroscopy neurofeedback technologies for mental health and wellbeing. Sensors, 23(18), 8482. https://doi.org/10.3390/s23208482
Frühholz, S., Trost, W., & Grandjean, D. (2014). The role of the medial temporal limbic system in processing emotions in voice and music. Neuroscience & Biobehavioral Reviews, 60, 192–203. https://doi.org/10.1016/j.neubiorev.2015.11.001
Gandour, J. (2000). Phonetics and phonology. In M. B. Broe & J. B. Pierrehumbert (Eds.), Papers in laboratory phonology V: Acquisition and the lexicon (pp. 185–209). Cambridge University Press.
Gandour, J., Wong, D., Dzemidzic, M., Lowe, M., Tong, Y., & Li, X. (2003). A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping, 18(3), 149–157. https://doi.org/10.1002/hbm.10088
George, M. S., Parekh, P. I., Rosinsky, N., Ketter, T. A., Kimbrell, T. A., Heilman, K. M., Herscovitch, P., & Post, R. M. (1996). Understanding emotional prosody activates right hemisphere regions. Archives of Neurology, 53(7), 665–670. https://doi.org/10.1001/archneur.1996.00550070103017
Giddens, C. L., Barron, K. W., Byrd-Craven, J., Clark, K. F., & Winter, A. S. (2013). Vocal indices of stress: A review. Journal of Voice, 27(3), 390.e21–390.e29. https://doi.org/10.1016/j.jvoice.2012.12.010
Hammami, M. A., Guerchi, M., Selmi, O., Sehli, F., Ghouili, H., Stângaciu, O. A., Marinău, M. A., Galeru, O., & Alexe, D. I. (2023). Effect of verbal encouragement on physical fitness, technical skill and physiological response during small-sided soccer games. Sustainability, 15(4), 3624. https://doi.org/10.3390/su15043624
Hansen, J. H., & Patil, S. (2007). Speech under stress: Analysis, modeling, and recognition. In C. Müller (Ed.), Speaker classification I (pp. 108–137). Springer. https://doi.org/10.1007/978-3-540-74200-5_6
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99. https://doi.org/10.1016/j.cognition.2003.10.011
Horvath, F. S. (1982). Detecting deception: The promise and the reality of voice stress analysis. Journal of Forensic Sciences, 27(2), 340–351.
Hopkins, B. A., Ratley, R. J., Benincasa, D. S., & Grieco, J. J. (2005). Evaluation of voice stress analysis technology. National Institute of Justice Journal, 253, 12–15. https://doi.org/10.1109/HICSS.2005.254
Kirchhübel, C., Howard, D. M., & Stedmon, A. W. (2011). Acoustic correlates of speech when under stress: Research, methods and future directions. International Journal of Speech, Language & the Law, 18(1), 75–98. https://doi.org/10.1558/ijsll.v18i1.75
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392–399. https://doi.org/10.1016/j.tics.2010.06.005
LaCroix, A. N., Diaz, M. T., & Rogalsky, C. (2020a). Effects of prosody on the cognitive and neural resources supporting sentence comprehension: A behavioral and lesion-symptom mapping study. Brain and Language, 203, 104756. https://doi.org/10.1016/j.bandl.2020.104756
LaCroix, A. N., Blumenstein, N., Tully, M., Baxter, L. C., & Rogalsky, C. (2020b). Effects of prosody on the cognitive and neural resources supporting sentence comprehension: A behavioral and lesion-symptom mapping study. Brain and Language, 203, 104756. https://doi.org/10.1016/j.bandl.2020.104756
Liebenthal, E., Silbersweig, D. A., & Stern, E. (2016). The language, tone and prosody of emotions: Neural substrates and dynamics of spoken-word emotion perception. Frontiers in Neuroscience, 10, 506. https://doi.org/10.3389/fnins.2016.00506
Mitchell, R. L. C., Jazdzyk, A., Stets, M., & Kotz, S. A. (2016). Recruitment of language-, emotion-, and speech-timing-associated brain regions for expressing emotional prosody: Investigation of functional neuroanatomy with fMRI. Frontiers in Human Neuroscience, 10, Article 518. https://doi.org/10.3389/fnhum.2016.00518
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815. https://doi.org/10.1038/383812a0
Paulmann, S., & Pell, M. D. (2010). Dynamic emotion processing in speech prosody: Discrete emotions induce distinct facial reactions. Cognition & Emotion, 24(5), 785–797. https://doi.org/10.3389/fnhum.2018.00244
Pichon, S., & Kell, C. A. (2013). Affective and sensorimotor components of emotional prosody generation. The Journal of Neuroscience, 33(4), 1640–1650. https://doi.org/10.1523/JNEUROSCI.3530-12.2013
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143. https://doi.org/10.1016/j.biopsycho.2006.06.009
Raza, Q., Ong, M. L. Y., & Kuan, G. (2019). Effects of using EEG neurofeedback device to enhance elite bowlers’ performance. In M. Hassan (Ed.), Enhancing health and sports performance by design: Proceedings of the International Conference on Movement, Health and Exercise (MoHE 2019), Kuching, Malaysia, 30 September–2 October 2019 (pp. 503–510). Springer. https://doi.org/10.1007/978-981-15-3270-2_51
Selmi, O., Khalifa, W. B., Ouerghi, N., Amara, F., Zouaoui, M., & Bouassida, A. (2017). Effect of verbal coach encouragement on small-sided games intensity and perceived enjoyment in youth soccer players. Journal of Athletic Enhancement, 6(1).
Van Puyvelde, M., Neyt, X., McGlone, F., & Pattyn, N. (2018). Voice stress analysis: A new framework for voice and effort in human performance. Frontiers in Psychology, 9, 1994. https://doi.org/10.3389/fpsyg.2018.01994
Weinstein, N., Zougkou, K., & Paulmann, S. (2018). You 'have' to hear this: Using tone of voice to motivate others. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 898–913. https://doi.org/10.1037/xhp0000502
Whalen, P. J., Shin, L. M., McInerney, S. C., & Fischer, H. (2004). A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion, 4(1), 93–101. https://doi.org/10.1037/1528-3542.1.1.70
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience, 18(1), 411–418. https://doi.org/10.1523/JNEUROSCI.18-01-00411.1998
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music. Nature Neuroscience, 10(5), 548–554. https://doi.org/10.1038/nn1941
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Hui Ying Jong, Garry Kuan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.