MicroRNA-mediated regulation of BDNF in depressive disorder: a pathway to diagnosis and therapy

Authors

  • Thi Minh Thu Nguyen (1) Faculty of Biology & Biotechnology, University of Science, Ho Chi Minh City, Vietnam (2) Research Center for Genetics and Reproductive Health (CGRH), University of Health Sciences, Ho Chi Minh City, Vietnam (3) Vietnam National University, Ho Chi Minh City, Vietnam
  • Si Bao Nguyen (1) Vietnam National University, Ho Chi Minh City, Vietnam (2) Faculty of Medicine, University of Health Sciences, Ho Chi Minh City, Vietnam
  • Thi Thu Hang Do (1) Research Center for Genetics and Reproductive Health (CGRH), University of Health Sciences, Ho Chi Minh City, Vietnam (2) Vietnam National University, Ho Chi Minh City, Vietnam (3) Faculty of Medicine, University of Health Sciences, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.31117/neuroscirn.v8i3.409

Keywords:

Depression, MicroRNA, MiRNA, BDNF, Diagnosis, Treatment

Abstract

Depressive disorder, also known as depression, represents a major global health concern. Effective diagnosis and treatment of depression are critical to moderate its impact. Current diagnostic methods for depression are time-consuming and subjective, which can lead to misdiagnosis and impact treatment effectiveness. Therefore, identifying potential biomarkers for early and accurate diagnosis is critically needed. Although the exact pathophysiology of depression remains unknown, neurotrophic factors, with brain-derived neurotrophic factor (BDNF) being the most important, have been elucidated to play a key role in the pathogenesis of depression. Alterations in functional BDNF may contribute to the pathophysiology of depression by impairing neuroplasticity, a process closely linked to antidepressant action. Meanwhile, advancements in next-generation sequencing (NGS), quantitative polymerase chain reaction (qPCR), and bioinformatics have enabled the identification of various microRNAs (miRNAs) associated with depression. This review aims to assess the role and mechanisms of microRNAs that target BDNF in depression. These microRNAs regulate the pathophysiology of depression, particularly through abnormalities in neuroplasticity and neurogenesis, as well as other mechanisms such as hypothalamic-pituitary-adrenal axis hyperactivity and inflammatory dysregulation. These microRNAs may serve as biomarkers for diagnosis and as targets for novel antidepressants. Our study identifies 16 miRNAs that target BDNF in depression, either directly or indirectly through other molecules. Among these, miR-124, miR-132, and miR-221 are promising candidates for biomarkers of depression. Meanwhile, miR-124 and miR-132 present significant promise for treatment. However, major challenges remain in translating these findings into clinical practice, underscoring the need for further research.

References

Ahmadimanesh, M., Etemad, L., Rad, D. M., Ghahremani, M. H., Mohammadpour, A. H., Esfehani, R. J., Jowsey, P., Behdani, F., Moallem, S. A., & Abbaszadegan, M. R. (2023). Effect of citalopram and sertraline on the expression of miRNA- 124, 132, and 16 and their protein targets in patients with depression. Iranian Journal of Basic Medical Sciences, 26(7), 820–829. https://doi.org/10.22038/ijbms.2023.66496.14595

Bloodgood, B. L., Sharma, N., Browne, H. A., Trepman, A. Z., & Greenberg, M. E. (2013). The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature, 503(7474), 121–125. https://doi.org/10.1038/nature12743

Casarotto, P. C., Girych, M., Fred, S. M., Kovaleva, V., Moliner, R., Enkavi, G., Biojone, C., Cannarozzo, C., Sahu, M. P., Kaurinkoski, K., Brunello, C. A., Steinzeig, A., Winkel, F., Patil, S., Vestring, S., Serchov, T., Diniz, C. R., Laukkanen, L., Cardon, I., . . . Castrén, E. (2021). Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 184(5), 1299-1313.e19. https://doi.org/10.1016/j.cell.2021.01.034

Casarotto, P., Umemori, J., & Castrén, E. (2022). BDNF receptor TrkB as the mediator of the antidepressant drug action. Frontiers in Molecular Neuroscience, 15, 1032224. https://doi.org/10.3389/fnmol.2022.1032224

Chang, C., Kuek, E. J. W., Su, C., & Gean, P. (2020). MicroRNA-206 regulates Stress-Provoked aggressive behaviors in post-weaning social isolation mice. Molecular Therapy — Nucleic Acids, 20, 812–822. https://doi.org/10.1016/j.omtn.2020.05.001

Cui, Y., Ma, G., Kong, F., & Song, L. (2021). Diagnostic values of miR-221-3p in serum and cerebrospinal fluid for post-stroke depression and analysis of risk factors. Iranian Journal of Public Health, 50(6), 1241-1249. https://doi.org/10.18502/ijph.v50i6.6423

Diener, C., Keller, A., & Meese, E. (2022). Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics, 38(6), 613–626. https://doi.org/10.1016/j.tig.2022.02.006

Ding, R., Su, D., Zhao, Q., Wang, Y., Wang, J., Lv, S., & Ji, X. (2023). The role of microRNAs in depression. Frontiers in Pharmacology, 14, 1129186. https://doi.org/10.3389/fphar.2023.1129186

Duman, R. S., Deyama, S., & Fogaça, M. V. (2019). Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. European Journal of Neuroscience, 53(1), 126–139. https://doi.org/10.1111/ejn.14630

Enatescu, V. R., Papava, I., Enatescu, I., Antonescu, M., Anghel, A., Seclaman, E., Sirbu, I. O., & Marian, C. (2016). Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investigation, 13(5), 549-557. https://doi.org/10.4306/pi.2016.13.5.549

Esvald, E., Tuvikene, J., Sirp, A., Patil, S., Bramham, C. R., & Timmusk, T. (2020). CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. Journal of Neuroscience, 40(7), 1405–1426. https://doi.org/10.1523/jneurosci.0367-19.2019

Fang, Y., Qiu, Q., Zhang, S., Sun, L., Li, G., Xiao, S., & Li, X. (2018). Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. Journal of Affective Disorders, 227, 745–751. https://doi.org/10.1016/j.jad.2017.11.090

Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108

Gao, Z., Chen, T., Yu, T., Zhang, L., Zhao, S., Gu, X., Pan, Y., & Kong, L. (2022). Cinnamaldehyde prevents intergenerational effect of paternal depression in mice via regulating GR/miR-190b/BDNF pathway. Acta Pharmacologica Sinica, 43(8), 1955–1969. https://doi.org/10.1038/s41401-021-00831-0

Gorinski, N., Bijata, M., Prasad, S., Wirth, A., Galil, D. A., Zeug, A., Bazovkina, D., Kondaurova, E., Kulikova, E., Ilchibaeva, T., Zareba-Koziol, M., Papaleo, F., Scheggia, D., Kochlamazashvili, G., Dityatev, A., Smyth, I., Krzystyniak, A., Wlodarczyk, J., Richter, D. W., . . . Ponimaskin, E. (2019). Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nature Communications, 10(1), 3924. https://doi.org/10.1038/s41467-019-11876-5

Guan, W., Xu, D., Ji, C., Wang, C., Liu, Y., Tang, W., Gu, J., Chen, Y., Huang, J., Liu, J., & Jiang, B. (2021). Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacological Research, 174, 105932. https://doi.org/10.1016/j.phrs.2021.105932

He, S., Liu, X., Jiang, K., Peng, D., Hong, W., Fang, Y., Qian, Y., Yu, S., & Li, H. (2016). Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. Journal of Psychiatric Research, 78, 65–71. https://doi.org/10.1016/j.jpsychires.2016.03.015

Hing, B., Sathyaputri, L., & Potash, J. B. (2018). A comprehensive review of genetic and epigenetic mechanisms that regulateBDNFexpression and function with relevance to major depressive disorder. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 177(2), 143–167. https://doi.org/10.1002/ajmg.b.32616

Ho, P. T. B., Clark, I. M., & Le, L. T. T. (2022). MicroRNA-based diagnosis and therapy. International Journal of Molecular Sciences, 23(13), 7167. https://doi.org/10.3390/ijms23137167

Huan, Z., Mei, Z., Na, H., Xinxin, M., Yaping, W., Ling, L., Lei, W., Kejin, Z., & Yanan, L. (2021). LncRNA miR-155-HG alleviates depression-like behaviors in mice by regulating the miR-155/BDNF axis. Neurochemical Research, 46(4), 935–944. https://doi.org/10.1007/s11064-021-03234-z

Huang, P., Wei, S., Luo, M., Tang, Z., Lin, Q., Wang, X., Luo, M., He, Y., Wang, C., Wei, D., Xia, C., & Xu, J. (2021). MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway. Annals of Translational Medicine, 9(20), 1594. https://doi.org/10.21037/atm-21-5149

Institute for Quality and Efficiency in Health Care (IQWiG). (2024, April 15). Depression: Learn More – How is depression treated? InformedHealth.org - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK279282/

Issler, O., & Chen, A. (2015). Determining the role of microRNAs in psychiatric disorders. Nature Reviews Neuroscience, 16(4), 201–212. https://doi.org/10.1038/nrn3879

Issler, O., Haramati, S., Paul, E. D., Maeno, H., Navon, I., Zwang, R., Gil, S., Mayberg, H. S., Dunlop, B. W., Menke, A., Awatramani, R., Binder, E. B., Deneris, E. S., Lowry, C. A., & Chen, A. (2014). MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron, 83(2), 344–360. https://doi.org/10.1016/j.neuron.2014.05.042

Ji, L., Ye, Y., Nie, P., Peng, J., Fu, C., Wang, Z., & Tong, L. (2019). Dysregulation of miR-142 results in anxiety-like behaviors following single prolonged stress. Behavioural Brain Research, 365, 157–163. https://doi.org/10.1016/j.bbr.2019.03.018

Karege, F., Bondolfi, G., Gervasoni, N., Schwald, M., Aubry, J., & Bertschy, G. (2005). Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological Psychiatry, 57(9), 1068–1072. https://doi.org/10.1016/j.biopsych.2005.01.008

Kennis, M., Gerritsen, L., Van Dalen, M., Williams, A., Cuijpers, P., & Bockting, C. (2020). Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Molecular Psychiatry, 25(2), 321–338. https://doi.org/10.1038/s41380-019-0585-z

Kim, H., Kim, J., Lee, H., Shin, E., Kang, H., Jeon, J., & Youn, B. (2021). Baiap3 regulates depressive behaviors in mice via attenuating dense core vesicle trafficking in subsets of prefrontal cortex neurons. Neurobiology of Stress, 16, 100423. https://doi.org/10.1016/j.ynstr.2021.100423

Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162. https://doi.org/10.1093/nar/gky1141

Kronenberg, G., Kirste, I., Inta, D., Chourbaji, S., Heuser, I., Endres, M., & Gass, P. (2009). Reduced hippocampal neurogenesis in the GR+/− genetic mouse model of depression. European Archives of Psychiatry and Clinical Neuroscience, 259(8), 499–504. https://doi.org/10.1007/s00406-009-0036-y

Kuang, W., Dong, Z., Tian, L., & Li, J. (2018). MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Brazilian Journal of Medical and Biological Research, 51(7), e7212. https://doi.org/10.1590/1414-431x20187212

Kunugi, H., Hori, H., Adachi, N., & Numakawa, T. (2010). Interface between hypothalamic‐pituitary‐adrenal axis and brain‐derived neurotrophic factor in depression. Psychiatry and Clinical Neurosciences, 64(5), 447–459. https://doi.org/10.1111/j.1440-1819.2010.02135.x

Leal, G., Bramham, C., & Duarte, C. (2017). BDNF and hippocampal synaptic plasticity. Vitamins and Hormones, 104, 153–195. https://doi.org/10.1016/bs.vh.2016.10.004

Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948. https://doi.org/10.1126/science.1065057

Leitão, A. L., & Enguita, F. J. (2022). A structural view of miRNA biogenesis and function. Non-coding RNA, 8(1), 10. https://doi.org/10.3390/ncrna8010010

Li, C., Wang, F., Miao, P., Yan, L., Liu, S., Wang, X., Jin, Z., & Gu, Z. (2020a). MiR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatric Disease and Treatment, 16, 949–957. https://doi.org/10.2147/ndt.s237558

Li, S., Ma, H., Yuan, X., Zhou, X., Wan, Y., & Chen, S. (2020b). MicroRNA-382-5p targets nuclear receptor subfamily 3 group c member 1 to regulate depressive-like behaviors induced by chronic unpredictable mild stress in rats. Neuropsychiatric Disease and Treatment, 16, 2053–2061. https://doi.org/10.2147/ndt.s243920

Li, Y., Xu, M., Gao, Z., Wang, Y., Yue, Z., Zhang, Y., Li, X., Zhang, C., Xie, S., & Wang, P. (2013). Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS ONE, 8(5), e63648. https://doi.org/10.1371/journal.pone.0063648

Li, Y., Li, S., Yan, J., Wang, D., Yin, R., Zhao, L., Zhu, Y., & Zhu, X. (2016). MiR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 65, 96–103. https://doi.org/10.1016/j.pnpbp.2015.09.004

Li, Y., Lu, X., Nie, J., Hu, P., Ge, F., Yuan, T., & Guan, X. (2020c). MicroRNA134 of ventral hippocampus is involved in cocaine Extinction-Induced anxiety-like and depression-like behaviors in mice. Molecular Therapy — Nucleic Acids, 19, 937–950. https://doi.org/10.1016/j.omtn.2019.12.030

Li, Y., Wang, N., Pan, J., Wang, X., Zhao, Y., & Guo, Z. (2021). Hippocampal mIRNA-144 modulates depressive-like behaviors in rats by targeting PTP1B. Neuropsychiatric Disease and Treatment, 17, 389–399. https://doi.org/10.2147/ndt.s263079

Lian, N., Niu, Q., Lei, Y., Li, X., Li, Y., & Song, X. (2018). MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle, 17(24), 2745–2755. https://doi.org/10.1080/15384101.2018.1556060

Licursi, V., Conte, F., Fiscon, G., & Paci, P. (2019). MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics, 20(1), 545. https://doi.org/10.1186/s12859-019-3105-x

Lin, C. C., Lee, C. T., Sun, M. H., & Huang, T. L. (2017). Increased Levels of miR-30e, miR-132, miR-185, and miR- 212 at Baseline and Increased Brain-derived Neurotrophic Factor Protein and mRNA Levels after Treatment in Patients with Major Depressive Disorder. Neuropsychiatry, 07(06), 920-926. https://doi.org/10.4172/neuropsychiatry.1000297

Liu, Y., Yang, X., Zhao, L., Zhang, J., Li, T., & Ma, X. (2016). Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatric Disease and Treatment, 12, 2905–2911. https://doi.org/10.2147/ndt.s116287

Liu, Z., Yang, J., Fang, Q., Shao, H., Yang, D., Sun, J., & Gao, L. (2021). MiRNA‐199a‐5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron. Brain and Behavior, 11(8), e02107. https://doi.org/10.1002/brb3.2107

Lopez, J. P., Lim, R., Cruceanu, C., Crapper, L., Fasano, C., Labonte, B., Maussion, G., Yang, J. P., Yerko, V., Vigneault, E., Mestikawy, S. E., Mechawar, N., Pavlidis, P., & Turecki, G. (2014). MiR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nature Medicine, 20(7), 764–768. https://doi.org/10.1038/nm.3582

Marwaha, S., Palmer, E., Suppes, T., Cons, E., Young, A. H., & Upthegrove, R. (2023). Novel and emerging treatments for major depression. The Lancet, 401(10371), 141–153. https://doi.org/10.1016/s0140-6736(22)02080-3

Miao, Z., Mao, F., Liang, J., Szyf, M., Wang, Y., & Sun, Z. S. (2018). Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Molecular Neurobiology, 55(2), 1097–1111. https://doi.org/10.1007/s12035-016-0378-1

Mikulska, J., Juszczyk, G., Gawrońska-Grzywacz, M., & Herbet, M. (2021). HPA axis in the pathomechanism of depression and schizophrenia: new therapeutic strategies based on its participation. Brain Sciences, 11(10), 1298. https://doi.org/10.3390/brainsci11101298

Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-Derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Frontiers in Cellular Neuroscience, 13, 363. https://doi.org/10.3389/fncel.2019.00363

Moliner, R., Girych, M., Brunello, C. A., Kovaleva, V., Biojone, C., Enkavi, G., Antenucci, L., Kot, E. F., Goncharuk, S. A., Kaurinkoski, K., Kuutti, M., Fred, S. M., Elsilä, L. V., Sakson, S., Cannarozzo, C., Diniz, C. R. a. F., Seiffert, N., Rubiolo, A., Haapaniemi, H., . . . Castrén, E. (2023). Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nature Neuroscience, 26(6), 1032–1041. https://doi.org/10.1038/s41593-023-01316-5

Mowla, S. J., Farhadi, H. F., Pareek, S., Atwal, J. K., Morris, S. J., Seidah, N. G., & Murphy, R. A. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. Journal of Biological Chemistry, 276(16), 12660–12666. https://doi.org/10.1074/jbc.m008104200

Nibuya, M., Morinobu, S., & Duman, R. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. Journal of Neuroscience, 15(11), 7539–7547. https://doi.org/10.1523/jneurosci.15-11-07539.1995

Ortega, M. A., Alvarez-Mon, M. A., García-Montero, C., Fraile-Martinez, O., Lahera, G., Monserrat, J., Muñoz-Merida, L., Mora, F., Rodríguez-Jiménez, R., Fernandez-Rojo, S., Quintero, J., & Álvarez-Mon, M. (2021). MicroRNAs as critical biomarkers of major depressive disorder: A comprehensive perspective. Biomedicines, 9(11), 1659. https://doi.org/10.3390/biomedicines9111659

Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W., Hempstead, B. L., & Lu, B. (2004). Cleavage of proBDNF by TPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491. https://doi.org/10.1126/science.1100135

Porter, G. A., & O’Connor, J. C. (2022). Brain-derived neurotrophic factor and inflammation in depression: pathogenic partners in crime? World Journal of Psychiatry, 12(1), 77–97. https://doi.org/10.5498/wjp.v12.i1.77

Qi, S., Yang, X., Zhao, L., Calhoun, V. D., Perrone-Bizzozero, N., Liu, S., Jiang, R., Jiang, T., Sui, J., & Ma, X. (2018). MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain, 141(3), 916–926. https://doi.org/10.1093/brain/awx366

Rajasethupathy, P., Fiumara, F., Sheridan, R., Betel, D., Puthanveettil, S. V., Russo, J. J., Sander, C., Tuschl, T., & Kandel, E. (2009). Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron, 63(6), 803–817. https://doi.org/10.1016/j.neuron.2009.05.029

Roy, B., Dunbar, M., Agrawal, J., Allen, L., & Dwivedi, Y. (2020). Amygdala-based altered MIRNome and epigenetic contribution of MIR-128-3P in conferring susceptibility to depression-like behavior via WNT signaling. The International Journal of Neuropsychopharmacology, 23(3), 165–177. https://doi.org/10.1093/ijnp/pyz071

Roy, B., Dunbar, M., Shelton, R. C., & Dwivedi, Y. (2017). Identification of microRNA-124-3P as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology, 42(4), 864–875. https://doi.org/10.1038/npp.2016.175

Schmidt, M. V., Sterlemann, V., Wagner, K., Niederleitner, B., Ganea, K., Liebl, C., Deussing, J. M., Berger, S., SchüTz, G., Holsboer, F., & MüLler, M. B. (2009). Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: differential short- and long-term consequences. Endocrinology, 150(6), 2709–2716. https://doi.org/10.1210/en.2008-1211

Schwarzenbach, H., Nishida, N., Calin, G. A., & Pantel, K. (2014). Clinical relevance of circulating cell-free microRNAs in cancer. Nature Reviews Clinical Oncology, 11(3), 145–156. https://doi.org/10.1038/nrclinonc.2014.5

Seyhan, A. A. (2024). Trials and tribulations of microRNA therapeutics. International Journal of Molecular Sciences, 25(3), 1469. https://doi.org/10.3390/ijms25031469

Shen, J., Li, Y., Qu, C., Xu, L., Sun, H., & Zhang, J. (2019). The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. Journal of Affective Disorders, 248, 81–90. https://doi.org/10.1016/j.jad.2019.01.031

Shen, J., Xu, L., Qu, C., Sun, H., & Zhang, J. (2018). Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behavioural Brain Research, 349, 1–7. https://doi.org/10.1016/j.bbr.2018.04.050

Shi, L., Ji, C., Tang, W., Liu, Y., Zhang, W., & Guan, W. (2022). Hippocampal miR-124 participates in the pathogenesis of depression via regulating the expression of BDNF in a chronic social defeat stress model of depression. Current Neurovascular Research, 19(2), 210–218. https://doi.org/10.2174/1567202619666220713105306

Su, B., Cheng, S., Wang, L., & Wang, B. (2022). MicroRNA-139-5p acts as a suppressor gene for depression by targeting nuclear receptor subfamily 3, group C, member 1. Bioengineered, 13(5), 11856–11866. https://doi.org/10.1080/21655979.2022.2059937

Su, M., Hong, J., Zhao, Y., Liu, S., & Xue, X. (2015). MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Molecular Medicine Reports, 12(4), 5399–5406. https://doi.org/10.3892/mmr.2015.4104

Sun, P., Liu, D. Z., Jickling, G. C., Sharp, F. R., & Yin, K. (2018). MicroRNA-based therapeutics in central nervous system injuries. Journal of Cerebral Blood Flow & Metabolism, 38(7), 1125–1148. https://doi.org/10.1177/0271678x18773871

Tan, P., Xue, T., Wang, Y., Hu, Z., Su, J., Yang, R., Ji, J., Ye, M., Chen, Z., Huang, C., & Lu, X. (2022). Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology, 209, 108990. https://doi.org/10.1016/j.neuropharm.2022.108990

Tang, Y., Yang, J., Ye, C., Xu, X., Cai, M., Zhang, Y., Lu, H., Mo, F., Li, H., & Shen, H. (2022). miR-182 mediated the inhibitory effects of NF-κB on the GPR39/CREB/BDNF pathway in the hippocampus of mice with depressive-like behaviors. Behavioural Brain Research, 418, 113647. https://doi.org/10.1016/j.bbr.2021.113647

Tong, L., Li, M., Nie, P., Chen, Y., Chen, Y., & Ji, L. (2021). MiR-132 downregulation alleviates behavioral impairment of rats exposed to single prolonged stress, reduces the level of apoptosis in PFC, and upregulates the expression of MeCP2 and BDNF. Neurobiology of Stress, 14, 100311. https://doi.org/10.1016/j.ynstr.2021.100311

Treiber, T., Treiber, N., & Meister, G. (2018). Author correction: regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology, 19(12), 808. https://doi.org/10.1038/s41580-018-0070-6

Uchida, S., Nishida, A., Hara, K., Kamemoto, T., Suetsugi, M., Fujimoto, M., Watanuki, T., Wakabayashi, Y., Otsuki, K., McEwen, B. S., & Watanabe, Y. (2008). Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA‐mediated down‐regulation of the glucocorticoid receptor. European Journal of Neuroscience, 27(9), 2250–2261. https://doi.org/10.1111/j.1460-9568.2008.06218.x

Voleti, B., & Duman, R. S. (2012). The roles of neurotrophic factor and WNT signaling in depression. Clinical Pharmacology & Therapeutics, 91(2), 333–338. https://doi.org/10.1038/clpt.2011.296

Vreugdenhil, E., Verissimo, C. S. L., Mariman, R., Kamphorst, J. T., Barbosa, J. S., Zweers, T., Champagne, D. L., Schouten, T., Meijer, O. C., De Kloet, E. R., & Fitzsimons, C. P. (2009). MicroRNA 18 and 124a Down-Regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology, 150(5), 2220–2228. https://doi.org/10.1210/en.2008-1335

Wang, G., An, T., Lei, C., Zhu, X., Yang, L., Zhang, L., & Zhang, R. (2022). Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134–mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. Journal of Ginseng Research, 46(3), 376–386. https://doi.org/10.1016/j.jgr.2021.03.005

Wang, Q., Zhao, G., Yang, Z., Liu, X., & Xie, P. (2018). Downregulation of microRNA 124 3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. International Journal of Molecular Medicine, 41, 493–500. https://doi.org/10.3892/ijmm.2017.3235

Wang, S., Mu, R., Li, C., Dong, S., Geng, D., Liu, Q., & Yi, L. (2017). MicroRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 417–425. https://doi.org/10.1016/j.pnpbp.2017.07.024

Weaver, D. T., Pishas, K. I., Williamson, D., Scarborough, J., Lessnick, S. L., Dhawan, A., & Scott, J. G. (2021). Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma. PLoS Computational Biology, 17(10), e1008755. https://doi.org/10.1371/journal.pcbi.1008755

World Health Organization. (2023, December 7). Depressive disorder (depression). Knowledge Action Portal. https://www.knowledge-action-portal.com/en/content/depressive-disorder-depression

Xian, X., Cai, L., Li, Y., Wang, R., Xu, Y., Chen, Y., Xie, Y., Zhu, X., & Li, Y. (2022). Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. Journal of Nanobiotechnology, 20(1), 122. https://doi.org/10.1186/s12951-022-01332-w

Xu, B., Wang, T., Xiao, J., Dong, W., Wen, H., Wang, X., Qin, Y., Cai, N., Zhou, Z., Xu, J., & Wang, H. (2019). FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β/ β-catenin signaling pathway. Biochemical Pharmacology, 163, 234–249. https://doi.org/10.1016/j.bcp.2019.02.023

Xu, N., Meng, H., Liu, T., Feng, Y., Qi, Y., Zhang, D., & Wang, H. (2017). Blueberry phenolics reduce gastrointestinal infection of patients with cerebral venous thrombosis by improving depressant-induced autoimmune disorder via miR-155-mediated brain-derived neurotrophic factor. Frontiers in Pharmacology, 8, 853. https://doi.org/10.3389/fphar.2017.00853

Yang, T., Nie, Z., Shu, H., Kuang, Y., Chen, X., Cheng, J., Yu, S., & Liu, H. (2020a). The role of BDNF on neural plasticity in depression. Frontiers in Cellular Neuroscience, 14, 82. https://doi.org/10.3389/fncel.2020.00082

Yang, W., Liu, M., Zhang, Q., Zhang, J., Chen, J., Chen, Q., & Suo, L. (2020b). Knockdown of miR-124 reduces depression-like behavior by targeting CREB1 and BDNF. Current Neurovascular Research, 17(2), 196–203. https://doi.org/10.2174/1567202617666200319141755

Yang, X., Yang, Q., Wang, X., Luo, C., Wan, Y., Li, J., Liu, K., Zhou, M., & Zhang, C. (2014). MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. NeuroMolecular Medicine, 16(3), 594–605. https://doi.org/10.1007/s12017-014-8312-z

Yu, H., Fan, C., Yang, L., Yu, S., Song, Q., Wang, P., & Mao, X. (2018). Ginsenoside RG1 prevents chronic Stress-Induced Depression-Like behaviors and neuronal structural plasticity in rats. Cellular Physiology and Biochemistry, 48(6), 2470–2482. https://doi.org/10.1159/000492684

Zhang, X., Xue, Y., Li, J., Xu, H., Yan, W., Zhao, Z., Yu, W., Zhai, X., Sun, Y., Wu, Y., Li, Y., Gui, L., Yu, D., Xiao, Z., & Yin, S. (2021a). The involvement of ADAR1 in antidepressant action by regulating BDNF via miR-432. Behavioural Brain Research, 402, 113087. https://doi.org/10.1016/j.bbr.2020.113087

Zhang, X., Yan, W., Xue, Y., Xu, H., Li, J., Zhao, Z., Sun, Y., Wang, Y., He, J., Huang, Y., Yu, D., Xiao, Z., & Yin, S. (2021b). Roles of miR-432 and circ_0000418 in mediating the anti-depressant action of ADAR1. Neurobiology of Stress, 15, 100396. https://doi.org/10.1016/j.ynstr.2021.100396

Zhang, Z., Xia, D., & Xu, A. (2022). Therapeutic effect of fastigial nucleus stimulation is mediated by the microRNA-182 & microRNA-382/BDNF signaling pathways in the treatment of post-stroke depression. Biochemical and Biophysical Research Communications, 627, 137–145. https://doi.org/10.1016/j.bbrc.2022.05.038

Zhao, Y., Wang, S., Chu, Z., Dang, Y., Zhu, J., & Su, X. (2017). MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1). Brain Research, 1669, 55–62. https://doi.org/10.1016/j.brainres.2017.05.020

Zheng, Y., Sheng, X., Jin, X., & Guan, W. (2024). MIR-182-5P: A novel biomarker in the treatment of depression in CSDS-Induced mice. The International Journal of Neuropsychopharmacology, 27(1), pyad064. https://doi.org/10.1093/ijnp/pyad064

Zou, Z., Chen, J., Feng, H., Cheng, Y., Wang, H., Zhou, Z., Guo, H., Zheng, W., & Xu, J. (2017). Novel phosphodiesterase 4 inhibitor FCPR03 alleviates Lipopolysaccharide-Induced neuroinflammation by regulation of the CAMP/PKA/CREB signaling pathway and NF-ΚB inhibition. Journal of Pharmacology and Experimental Therapeutics, 362(1), 67–77. https://doi.org/10.1124/jpet.116.239608

Żurawek, D., & Turecki, G. (2021). The miRNome of depression. International Journal of Molecular Sciences, 22(21), 11312. https://doi.org/10.3390/ijms222111312

Downloads

Published

2025-09-16

How to Cite

Nguyen, T. M. T., Nguyen, S. B., & Do, T. T. H. (2025). MicroRNA-mediated regulation of BDNF in depressive disorder: a pathway to diagnosis and therapy. Neuroscience Research Notes, 8(3), 409.1–409.21. https://doi.org/10.31117/neuroscirn.v8i3.409