Neural substrates of perception and imagery revealed by fMRI: a pilot study

Authors

  • Yiyun Gong Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • Aini Ismafairus Abd Hamid (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • Hafidah Umar (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia

DOI:

https://doi.org/10.31117/neuroscirn.v8i3.392

Keywords:

Perception, Mental Imagery, Visual Imagery, Vividness, fMRI

Abstract

Visual mental imagery, the subjective experience of “seeing” in the absence of sensory input, has long been studied in relation to perception. While considerable evidence points to shared neural mechanisms, the precise nature of their overlap and divergence remains an area of active investigation. The present fMRI study examined brain activation patterns and functional roles of distinct regions during the perception and imagery of animals, utilising a sparse temporal sampling paradigm to control for auditory interference. Seven participants (2 males, 5 females; mean age=22.57, SD=0.48) participated in the study. Perception and imagery tasks were conducted separately within a single session to minimise fatigue and motion artefacts. BOLD signals were preprocessed and analysed using SPM12, employing paired t-tests and repeated measures ANOVA. The analysis utilised an uncorrected threshold of p<0.001 at the voxel level, combined with cluster-level family-wise error correction at p<0.05. Results revealed substantial overlap in neural substrates, with perception uniquely engaged in the right medial superior frontal gyrus, suggesting heightened top-down attentional control. In contrast, imagery preferentially activated the left supplementary motor area and right opercular inferior frontal gyrus, implying a greater demand for internal representation and cognitive control. The imagery phase further demonstrated widespread activation across the frontoparietal network and temporal lobe, with image generation eliciting the strongest engagement of auditory and attentional regions. Self-reported vividness during imagery correlated positively with pre-scan vividness scores (p<0.05), validating the ecological relevance of the task. These findings suggest that while perception and imagery share a common neural foundation, they diverge in the specific cognitive processes they recruit, with imagery placing greater emphasis on internal generation and manipulation of mental representations. The study highlights the dynamic interplay of brain regions supporting visual imagery and its multifaceted nature, offering potential implications for interventions targeting cognitive enhancement and addressing deficits in perception or imagery.

References

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & De Lange, F. P. (2013). Shared representations for working memory and mental imagery in early visual cortex. Current Biology, 23(15), 1427–1431. https://doi.org/10.1016/j.cub.2013.05.065

Amedi, A., Malach, R., & Pascual-Leone, A. (2005). Negative BOLD differentiates visual imagery and perception. Neuron, 48(5), 859–872. https://doi.org/10.1016/j.neuron.2005.10.032

Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177. https://doi.org/10.1016/j.tics.2004.02.010

Asanowicz, D., Panek, B., & Kotlewska, I. (2021). Selection for action: The medial frontal cortex is an executive hub for stimulus and response selection. Journal of Cognitive Neuroscience, 33(8), 1442–1469. https://doi.org/10.1162/jocn_a_01727

Bartolomeo, P., Bachoud-Lévi, A., De Gelder, B., Denes, G., Barba, G. D., Brugières, P., & Degos, J. (1998). Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia, 36(3), 239–249. https://doi.org/10.1016/s0028-3932(97)00103-6

Bartolomeo, P., Bachoud-Lévi, A., & De Schotten, M. T. (2013). The anatomy of cerebral achromatopsia: A reappraisal and comparison of two case reports. Cortex, 56, 138–144. https://doi.org/10.1016/j.cortex.2013.01.013

Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17(1), 353–362. https://doi.org/10.1523/jneurosci.17-01-00353.1997

Boccia, M., Sulpizio, V., Bencivenga, F., Guariglia, C., & Galati, G. (2021). Neural representations underlying mental imagery as unveiled by representation similarity analysis. Brain Structure and Function, 226(5), 1511–1531. https://doi.org/10.1007/s00429-021-02266-z

Breedlove, J. L., St-Yves, G., Olman, C. A., & Naselaris, T. (2020). Generative feedback explains distinct brain activity codes for seen and mental images. Current Biology, 30(12), 2211-2224.e6. https://doi.org/10.1016/j.cub.2020.04.014

Bugatus, L., Weiner, K. S., & Grill-Spector, K. (2017). Task alters category representations in prefrontal but not high-level visual cortex. NeuroImage, 155, 437–449. https://doi.org/10.1016/j.neuroimage.2017.03.062

Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and FMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47. https://doi.org/10.1162/08989290051137585

Cai, Y., Zhang, D., Liang, B., Wang, Z., Li, J., Gao, Z., Gao, M., Chang, S., Jiao, B., Huang, R., & Liu, M. (2018). Relation of visual creative imagery manipulation to resting-state brain oscillations. Brain Imaging and Behavior, 12(1), 258–273. https://doi.org/10.1007/s11682-017-9689-8

Campos, A., & Pérez-Fabello, M. J. (2009). Psychometric quality of a revised version vividness of visual imagery questionnaire. Perceptual and Motor Skills, 108(3), 798–802. https://doi.org/10.2466/pms.108.3.798-802

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004

Cole, M. W., & Schneider, W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

De Borst, A. W., Sack, A. T., Jansma, B. M., Esposito, F., De Martino, F., Valente, G., Roebroeck, A., Di Salle, F., Goebel, R., & Formisano, E. (2011). Integration of “what” and “where” in frontal cortex during visual imagery of scenes. NeuroImage, 60(1), 47–58. https://doi.org/10.1016/j.neuroimage.2011.12.005

De Gelder, B., Tamietto, M., Pegna, A. J., & Van Den Stock, J. (2014). Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness. Cortex, 72, 15–26. https://doi.org/10.1016/j.cortex.2014.11.009

Dijkstra, N., Bosch, S. E., & Van Gerven, M. A. (2017a). Vividness of visual imagery depends on the neural overlap with perception in visual areas. Journal of Neuroscience, 37(5), 1367–1373. https://doi.org/10.1523/jneurosci.3022-16.2016

Dijkstra, N., Bosch, S. E., & Van Gerven, M. A. (2019). Shared neural mechanisms of visual perception and imagery. Trends in Cognitive Sciences, 23(5), 423–434. https://doi.org/10.1016/j.tics.2019.02.004

Dijkstra, N., Zeidman, P., Ondobaka, S., Van Gerven, M. a. J., & Friston, K. (2017b). Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Scientific Reports, 7(1), 5677. https://doi.org/10.1038/s41598-017-05888-8

Fulford, J., Milton, F., Salas, D., Smith, A., Simler, A., Winlove, C., & Zeman, A. (2017). The neural correlates of visual imagery vividness – An fMRI study and literature review. Cortex, 105, 26–40. https://doi.org/10.1016/j.cortex.2017.09.014

Ganis, G. (2013). Visual mental imagery. Multisensory Imagery (pp. 9–28). Springer Publishing, United States. https://doi.org/10.1007/978-1-4614-5879-1_2

Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive Brain Research, 20(2), 226–241. https://doi.org/10.1016/j.cogbrainres.2004.02.012

Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage, 50(3), 1313–1319. https://doi.org/10.1016/j.neuroimage.2009.12.109

Hubbard, T. L. (2010). Auditory imagery: Empirical findings. Psychological Bulletin, 136(2), 302–329. https://doi.org/10.1037/a0018436

Johnson, M. R., & Johnson, M. K. (2014). Decoding individual natural scene representations during perception and imagery. Frontiers in Human Neuroscience, 8, 059. https://doi.org/10.3389/fnhum.2014.00059

Klein-Flügge, M. C., Bongioanni, A., & Rushworth, M. F. (2022). Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron, 110(17), 2743–2770. https://doi.org/10.1016/j.neuron.2022.05.022

Koenig-Robert, R., & Pearson, J. (2020). Why do imagery and perception look and feel so different? Philosophical Transactions of the Royal Society B Biological Sciences, 376(1817), 20190703. https://doi.org/10.1098/rstb.2019.0703

Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 14980–14986. https://doi.org/10.1523/jneurosci.3706-09.2009

Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology, 22(3–4), 333–347. https://doi.org/10.1080/02643290442000130

Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., Pezzulo, G., Ramnani, N., Riva, D., Schmahmann, J., Vandervert, L., & Yamazaki, T. (2014). Consensus paper: the cerebellum’s role in movement and cognition. The Cerebellum, 13(1), 151–177. https://doi.org/10.1007/s12311-013-0511-x

Laakso, H. M., Hietanen, M., Melkas, S., Sibolt, G., Curtze, S., Virta, M., Ylikoski, R., Pohjasvaara, T., Kaste, M., Erkinjuntti, T., & Jokinen, H. (2019). Executive function subdomains are associated with post‐stroke functional outcome and permanent institutionalization. European Journal of Neurology, 26(3), 546–552. https://doi.org/10.1111/ene.13854

Lee, S., Kravitz, D. J., & Baker, C. I. (2011). Disentangling visual imagery and perception of real-world objects. NeuroImage, 59(4), 4064–4073. https://doi.org/10.1016/j.neuroimage.2011.10.055

Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British Journal of Psychology, 64(1), 17–24. https://doi.org/10.1111/j.2044-8295.1973.tb01322.x

Marks, D. F. (1995). New directions for Mental Imagery Research. Journal of Mental Imagery, 19(3–4), 153–167. https://psycnet.apa.org/record/1996-29150-001

McCormick, D. A., & Bal, T. (1994). Sensory gating mechanisms of the thalamus. Current Opinion in Neurobiology, 4(4), 550–556. https://doi.org/10.1016/0959-4388(94)90056-6

McKelvie, S. J. (1995). The VVIQ as a psychometric test of individual differences in visual imagery vividness: A critical quantitative review and plea for direction. Journal of Mental Imagery, 19(3–4), 1–106. https://psycnet.apa.org/record/1996-29151-001

Milton, F., Fulford, J., Dance, C., Gaddum, J., Heuerman-Williamson, B., Jones, K., Knight, K. F., MacKisack, M., Winlove, C., & Zeman, A. (2021). Behavioral and neural signatures of visual imagery vividness extremes: aphantasia versus hyperphantasia. Cerebral Cortex Communications, 2(2), tgab035. https://doi.org/10.1093/texcom/tgab035

Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F., & Aglioti, S. M. (2007). Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex, 44(2), 109–118. https://doi.org/10.1016/j.cortex.2006.06.004

Morozova, M., Nasibullina, A., Yakovlev, L., Syrov, N., Kaplan, A., & Lebedev, M. (2024). Tactile versus motor imagery: differences in corticospinal excitability assessed with single-pulse TMS. Scientific Reports, 14(1), 14862. https://doi.org/10.1038/s41598-024-64665-6

Mountcastle, V. (1997). The columnar organization of the neocortex. Brain, 120(4), 701–722. https://doi.org/10.1093/brain/120.4.701

Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews. Neuroscience, 9(11), 856–869. https://doi.org/10.1038/nrn2478

Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015). A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes. NeuroImage, 105, 215–228. https://doi.org/10.1016/j.neuroimage.2014.10.018

Othman, E. A., Yusoff, A. N., Mohamad, M., Manan, H. A., Hamid, A. I. A., & Giampietro, V. (2020). Hemispheric lateralization of auditory working memory regions during stochastic resonance: an FMRI study. Journal of Magnetic Resonance Imaging, 51(6), 1821–1828. https://doi.org/10.1002/jmri.27016

Pearson, J., Rademaker, R. L., & Tong, F. (2011). Evaluating the mind’s eye. Psychological Science, 22(12), 1535–1542. https://doi.org/10.1177/0956797611417134

Perrachione, T. K., & Ghosh, S. S. (2013). Optimized design and analysis of Sparse-Sampling FMRI experiments. Frontiers in Neuroscience, 7, 055. https://doi.org/10.3389/fnins.2013.00055

Perry, C. J., & Fallah, M. (2014). Feature integration and object representations along the dorsal stream visual hierarchy. Frontiers in Computational Neuroscience, 8, 084. https://doi.org/10.3389/fncom.2014.00084

Pidgeon, L. M., Grealy, M., Duffy, A. H. B., Hay, L., McTeague, C., Vuletic, T., Coyle, D., & Gilbert, S. J. (2016). Functional neuroimaging of visual creativity: a systematic review and meta‐analysis. Brain and Behavior, 6(10), e00540. https://doi.org/10.1002/brb3.540

Ragni, F., Lingnau, A., & Turella, L. (2021). Decoding category and familiarity information during visual imagery. NeuroImage, 241, 118428. https://doi.org/10.1016/j.neuroimage.2021.118428

Reddy, L., Tsuchiya, N., & Serre, T. (2010). Reading the mind’s eye: Decoding category information during mental imagery. NeuroImage, 50(2), 818–825. https://doi.org/10.1016/j.neuroimage.2009.11.084

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025. https://doi.org/10.1038/14819

Slotnick, S. D., Thompson, W. L., & Kosslyn, S. M. (2005). Visual mental imagery induces retinotopically organized activation of early visual areas. Cerebral Cortex, 15(10), 1570–1583. https://doi.org/10.1093/cercor/bhi035

Spagna, A., Hajhajate, D., Liu, J., & Bartolomeo, P. (2021). Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neuroscience & Biobehavioral Reviews, 122, 201–217. https://doi.org/10.1016/j.neubiorev.2020.12.029

Sulfaro, A. A., Robinson, A. K., & Carlson, T. A. (2023). Modelling perception as a hierarchical competition differentiates imagined, veridical, and hallucinated percepts. Neuroscience of Consciousness, 2023(1), niad018. https://doi.org/10.1093/nc/niad018

Tabi, Y. A., Maio, M. R., Attaallah, B., Dickson, S., Drew, D., Idris, M. I., Kienast, A., Klar, V., Nobis, L., Plant, O., Saleh, Y., Sandhu, T. R., Slavkova, E., Toniolo, S., Zokaei, N., Manohar, S. G., & Husain, M. (2022). Vividness of visual imagery questionnaire scores and their relationship to visual short-term memory performance. Cortex, 146, 186–199. https://doi.org/10.1016/j.cortex.2021.10.011

Thorudottir, S., Sigurdardottir, H. M., Rice, G. E., Kerry, S. J., Robotham, R. J., Leff, A. P., & Starrfelt, R. (2020). The architect who lost the ability to imagine: the cerebral basis of visual imagery. Brain Sciences, 10(2), 59. https://doi.org/10.3390/brainsci10020059

Umar, H., Mast, F. W., Cacchione, T., & Martarelli, C. S. (2021). The prioritization of visuo-spatial associations during mental imagery. Cognitive Processing, 22(2), 227–237. https://doi.org/10.1007/s10339-020-01010-5

Van Noordt, S., Heffer, T., & Willoughby, T. (2022). A developmental examination of medial frontal theta dynamics and inhibitory control. NeuroImage, 246, 118765. https://doi.org/10.1016/j.neuroimage.2021.118765

Winlove, C. I., Milton, F., Ranson, J., Fulford, J., MacKisack, M., Macpherson, F., & Zeman, A. (2018). The neural correlates of visual imagery: A co-ordinate-based meta-analysis. Cortex, 105, 4–25. https://doi.org/10.1016/j.cortex.2017.12.014

Woo, C., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 91, 412–419. https://doi.org/10.1016/j.neuroimage.2013.12.058

World Health Organization. (2018, March 1). WHO launches the HearWHO app for mobile devices to help detect hearing loss. WHO Newsletters. https://www.who.int/news/item/01-03-2018-who-launches-the-hearwho-app-for-mobile-devices-to-help-detect-hearing-loss

Xie, S., Kaiser, D., & Cichy, R. M. (2020). Visual imagery and perception share neural representations in the alpha frequency band. Current Biology, 30(13), 2621-2627.e5. https://doi.org/10.1016/j.cub.2020.04.074

Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery – congenital aphantasia. Cortex, 73, 378–380. https://doi.org/10.1016/j.cortex.2015.05.019

Downloads

Published

2025-09-16

How to Cite

Gong, Y., Abd Hamid, A. I., & Umar, H. (2025). Neural substrates of perception and imagery revealed by fMRI: a pilot study. Neuroscience Research Notes, 8(3), 392.1–392.14. https://doi.org/10.31117/neuroscirn.v8i3.392