Investigating the effect of conventional physiotherapy training on muscle activity among diabetic neuropathy patients through wireless EMG: a pilot study
DOI:
https://doi.org/10.31117/neuroscirn.v8i1.389Keywords:
Diabetic neuropathy, Noroxon wireless EMG, Diabetes, Physiotherapy, Voluntary contraction, Muscle activityAbstract
Persons with diabetes often experience muscle weakness and decreased mobility due to diabetic neuropathy. This condition usually arises due to prolonged elevated blood sugar levels, which damage the motor nerves, innervating the muscles and sensory nerves. As the neuropathy progresses, it can cause loss of muscle mass and diminished motor function in the legs and feet. Consequently, individuals with diabetic neuropathy may experience difficulties with balance, walking, and performing daily activities. This weakness increases the risk of falls and injuries and contributes to reduced mobility and a lower quality of life. Hence, early intervention and management are essential to preserve muscle strength and functionality among the diabetic population. Managing muscle function and mobility in affected individuals is a significant challenge. This pilot study aimed to investigate the effect of conventional physiotherapy training on muscle activity in diabetic neuropathy patients using Noroxon wireless sensor electromyography (EMG) technology. The study included 8 patients aged 45-65; after obtaining consent and meeting selection criteria, these patients were enrolled. Wireless sensor EMG monitored muscle activity in the tibialis anterior and soleus. Participants underwent conventional physiotherapy, consisting of 40 minutes daily, 5 days a week, over 3 months. The result showed a significant increase in the maximum voluntary contraction of tibialis anterior and soleus muscles on both right and left side mean values at p ≤ 0.001. In conclusion, the study demonstrated that diabetic neuropathy causes alterations in muscle dynamics, particularly in distal muscles. These findings offer valuable insights into the progression of neuropathy and highlight the effectiveness of physiotherapy in mitigating its effects by significantly enhancing the maximum voluntary contraction of these muscles.
References
Allet, L., Armand, S., de Bie, R. A., Golay, A., Monnin, D., Aminian, K., Staal, J. B., & de Bruin, E. D. (2009). The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia, 53(3), 458–466. https://doi.org/10.1007/s00125-009-1592-4
Andersen, S. T., Witte, D. R., Dalsgaard, E.-M., Andersen, H., Nawroth, P., Fleming, T., Jensen, T. M., Finnerup, N. B., Jensen, T. S., Lauritzen, T., Feldman, E. L., Callaghan, B. C., & Charles, M. (2018). Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care, 41(5), 1068–1075. https://doi.org/10.2337/dc17-2062
Armstrong, D. G., Boulton, A. J. M., & Bus, S. A. (2017). Diabetic foot ulcers and their recurrence. New England Journal of Medicine, 376(24), 2367–2375. https://doi.org/10.1056/nejmra1615439
Callaghan B. C., Price R. S., Chen K. S., & Feldman E. L. (2015). The importance of rare subtypes in diagnosis and treatment of peripheral neuropathy: A review. JAMA Neurology, 72(12), 1510–1518. https://doi.org/10.1001/jamaneurol.2015.2347
Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L., & Feldman, E. L. (2012). Diabetic neuropathy: Clinical manifestations and current treatments. The Lancet Neurology, 11(6), 521–534. https://doi.org/10.1016/s1474-4422(12)70065-0
Edwards, J. L., Vincent, A. M., Cheng, H. T., & Feldman, E. L. (2008). Diabetic neuropathy: Mechanisms to management. Pharmacology & Therapeutics, 120(1), 1–34. https://doi.org/10.1016/j.pharmthera.2008.05.005
Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature Reviews Disease Primers, 5(1), 41. https://doi.org/10.1038/s41572-019-0092-1
Geraldes, P., & King, G. L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research, 106(8), 1319–1331. https://doi.org/10.1161/circresaha.110.217117
Harris-Hayes, M., Schootman, M., Schootman, J. C., & Hastings, M. K. (2020). The role of physical therapists in fighting the type 2 diabetes epidemic. Journal of Orthopaedic & Sports Physical Therapy, 50(1), 5–16. https://doi.org/10.2519/jospt.2020.9154I
IJzerman, T. H., Schaper, N. C., Melai, Tom., Meijer, K., Willems, P. J. B., & Savelberg, H. H. C. M. (2012). Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Research and Clinical Practice, 95(3), 345–351. https://doi.org/10.1016/j.diabres.2011.10.026
Jahantigh Akbari, N., Hosseinifar, M., Naimi, S. S., Mikaili, S., & Rahbar, S. (2020). The efficacy of physiotherapy interventions in mitigating the symptoms and complications of diabetic peripheral neuropathy: A systematic review. Journal of Diabetes & Metabolic Disorders, 19(2), 1995–2004. https://doi.org/10.1007/s40200-020-00652-8
Jensen, T. S., Karlsson, P., Gylfadottir, S. S., Andersen, S. T., Bennett, D. L., Tankisi, H., Finnerup, N. B., Terkelsen, A. J., Khan, K., Themistocleous, A. C., Kristensen, A. G., Itani, M., Sindrup, S. H., Andersen, H., Charles, M., Feldman, E. L., & Callaghan, B. C. (2021). Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain, 144(6), 1632–1645. https://doi.org/10.1093/brain/awab079
Kluding, P. M., Bareiss, S. K., Hastings, M., Marcus, R. L., Sinacore, D. R., & Mueller, M. J. (2016). Physical training and activity in people with diabetic peripheral neuropathy: Paradigm shift. Physical Therapy, 97(1), 31–43. https://doi.org/10.2522/ptj.20160124
Merletti, R., Temporiti, F., Gatti, R., Gupta, S., Sandrini, G., & Serrao, M. (2023). Translation of surface electromyography to clinical and motor rehabilitation applications: The need for new clinical figures. Translational Neuroscience, 14(1), 20220279. https://doi.org/10.1515/tnsci-2022-0279
Parasoglou, P., Rao, S., & Slade, J. M. (2017). Declining skeletal muscle function in diabetic peripheral neuropathy. Clinical Therapeutics, 39(6), 1085–1103. https://doi.org/10.1016/j.clinthera.2017.05.001
Pop-Busui, R., Boulton, A. J. M., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2016). Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care, 40(1), 136–154. https://doi.org/10.2337/dc16-2042
Ramji, N., Toth, C., Kennedy, J., & Zochodne, D. W. (2007). Does diabetes mellitus target motor neurons? Neurobiology of Disease, 26(2), 301–311. https://doi.org/10.1016/j.nbd.2006.11.016
Rampichini, S., Vieira, T. M., Castiglioni, P., & Merati, G. (2020). Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review. Entropy, 22(5), 529. https://doi.org/10.3390/e22050529
Resnick, H. E., Stansberry, K. B., Harris, T. B., Tirivedi, M., Smith, K., Morgan, P., & Vinik, A. I. (2002). Diabetes, peripheral neuropathy, and old age disability. Muscle & Nerve, 25(1), 43–50. https://doi.org/10.1002/mus.1217
Tesfaye, S., Vileikyte, L., Rayman, G., Sindrup, S. H., Perkins, B. A., Baconja, M., Vinik, A. I., & Boulton, A. J. M. (2011). Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes/Metabolism Research and Reviews, 27(7), 629–638. https://doi.org/10.1002/dmrr.1225
Ullah, S., & Iqbal, K. (2020). A preliminary review on EMG signals for assessment of diabetic peripheral neuropathy disorder. In M. Dursun (Ed.), 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE) (pp. 42–46). IEEE. https://doi.org/10.1109/iceee49618.2020.9102488
Vieira, T. M. M., Loram, I. D., Muceli, S., Merletti, R., & Farina, D. (2012). Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: Is recruitment intermittent? What triggers recruitment? Journal of Neurophysiology, 107(2), 666–676. https://doi.org/10.1152/jn.00659.2011
Ziegler, D., Landgraf, R., Lobmann, R., Reiners, K., Rett, K., Schnell, O., & Strom, A. (2018). Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Research and Clinical Practice, 139, 147–154. https://doi.org/10.1016/j.diabres.2018.02.043
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Gnanamoorthy Tharani , Jibi Paul, Jagatheesan Alagesan, Narayanaswamy Harikrishnan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.