Analysis of lumbar dorsal spinal potentials evoked by electrical stimulation of the colon and their changes induced by high-frequency stimulation or ischemia in rats

Authors

  • María Duarte Laboratorio de Neurofisiología, Escuela de Ciencias Biomédicas y Tecnológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
  • Mariangel Gallegos Laboratorio de Neurofisiología, Escuela de Ciencias Biomédicas y Tecnológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
  • América Arveláez Laboratorio de Neurofisiología, Escuela de Ciencias Biomédicas y Tecnológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela.
  • Antonio Eblen-Zajjur Laboratorio de Neurociencia Traslacional, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.

DOI:

https://doi.org/10.31117/neuroscirn.v8i1.367

Keywords:

Spinal evoked potentials, Visceral afferences, Colon, Visceral stimulation

Abstract

The clinical-related input and processing of intestinal afferents to the spinal cord is not well known. This study aims to develop an electrophysiological experimental animal model to study spinal cord afferents from the colon during clinical-related conditions such as hyperexcitability or ischemia. Spinal cord evoked potentials (SCEP) were elicited by colonic stimulation in ten male adult Sprague-Dawley rats anesthetized with thiobarbital, 60 mg kg-1 i.p. After laminectomy (T11 to L5), a tungsten electrode (500 μm; <50Ω) was placed in the spinal dorsum to record SCEP induced by bipolar electrical stimulation of colon mucosa (basal 30 V; 1 ms) at low (0.2 Hz; 10 min) or high (5 Hz; 5 min) frequency. In 3 experiments, after the basal recording, a respiratory arrest was induced by D-tubocurarine to evaluate the ischemia effects. The SCEPs were stable and reliable (n=310), displaying a N1 wave (delay: 3.9±0.1 ms; amplitude 7.78±0.39 μV) and P1 wave (delay 9.96±0.14 ms; amplitude 2.97±0.21 μV). Colonic high-frequency stimulation induced an amplitude increase in both +11% (N1) and +23.7% (P1) (p<0.001). The ischemia induced a linear decay of both wave amplitudes more intense for the P1 wave. sensitive. These results denote the intense colonic input to the lumbar dorsal spinal cord, the presence of spinal sensory potentiation mechanisms induced by colonic high frequency stimulation, and the high oxygen dependency of the neuronal networks involved in the N1 and P1 wave generation. This experimental model could contribute to the study of visceral pain and inflammation, allowing the electrophysiological evaluation of experimental treatment response in experimental colon disease models.

References

Bai, Y., Chen, Y. B., Qiu, X. T., Chen, Y. B., Ma, L. T., Li, Y. Q., Sun, H. K., Zhang, M. M., Zhang, T., Chen, T., Fan, B. Y., Li, H., & Li, Y. Q. (2019). Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World Journal of Gastroenterology, 25(40), 6077–6093. https://doi.org/10.3748/wjg.v25.i40.6077

Bannister, K., Patel, R., Goncalves, L., Townson, L., & Dickenson, A. H. (2015). Diffuse noxious inhibitory controls and nerve injury: Restoring an imbalance between descending monoamine inhibitions and facilitations. Pain, 156(9), 1803–1811. https://doi.org/10.1097/j.pain.0000000000000240

Barrett, J. E. (2015). The pain of pain: Challenges of animal behavior models. European Journal of Pharmacology, 753, 183–190. https://doi.org/10.1016/j.ejphar.2014.11.046

Bielefeldt, K., & Gebhart, G. F. (2022). Visceral pain. In Clinical Pain Management (pp. 355–365). Wiley. https://doi.org/10.1002/9781119701170.ch34

Boezaart, A. P., Smith, C. R., Chembrovich, S., Zasimovich, Y., Server, A., Morgan, G., Theron, A., Booysen, K., & Reina, M. A. (2021). Visceral versus somatic pain: An educational review of anatomy and clinical implications. Regional Anesthesia & Pain Medicine, 46(7), 629–636. https://doi.org/10.1136/rapm-2020-102084

Brierley, S. M., Hibberd, T. J., & Spencer, N. J. (2018). Spinal afferent innervation of the colon and rectum. Frontiers in Cellular Neuroscience, 12(December). https://doi.org/10.3389/fncel.2018.00467

Brookes, S. J. H., Spencer, N. J., Costa, M., & Zagorodnyuk, V. P. (2013). Extrinsic primary afferent signalling in the gut. Nature Reviews Gastroenterology and Hepatology, 10(5), 286–296. https://doi.org/10.1038/nrgastro.2013.29

Burma, N. E., Leduc-Pessah, H., Fan, C. Y., & Trang, T. (2017). Animal models of chronic pain: Advances and challenges for clinical translation. Journal of Neuroscience Research, 95(6), 1242–1256. https://doi.org/10.1002/jnr.23768

Chagín-Nazar, M., & Eblen-Zajjur, A. (2015). Effect of noxious bucal trigeminal high frequency electrical stimulation on lumbar spinal cord evaluated by evoked potentials in the rat. Archivos de Neurociencias, 20(4), 258–264. https://doi.org/10.31157/an.v20i4.101

Chey, W. D., Beydoun, A., Roberts, D. J., Hasler, W. L., & Owyang, C. (1995). Octreotide reduces perception of rectal electrical stimulation by spinal afferent pathway inhibition. American Journal of Physiology - Gastrointestinal and Liver Physiology, 269(6 32-6), 821–826. https://doi.org/10.1152/ajpgi.1995.269.6.g821

Devinsky, O., Boesch, J., Cerda- Gonzalez, S., Coffey, B., Davis, K., Friedman, D., Hainline, B., Houpt, K., Lieberman, D., Perry, P., Prüss, H., Samuels, M., Small, G., Volk, H., Summerfield, A., Vite, C., Wisniewski, T., & Natterson- Horowitz, B. (2018). A cross-species approach to disorders affecting brain and behaviour. Nature Reviews Neurology, 14, 677–686. https://doi.org/10.1038/s41582-018-0074-z

Eblen-Zajjur, A. A., & Sandkühler, J. (1996). Synchronicity of nociceptive and non-nociceptive adjacent neurons in the spinal dorsal horn of the rat: Stimulus-induced plasticity. Neuroscience, 76(1), 39–54. https://doi.org/10.1016/S0306-4522(96)00286-2

Elsenbruch, S., Icenhour, A., & Enck, P. (2017). Visceral pain - A biopsychological perspective. Neuroforum, 23(3), 105–110. https://doi.org/10.1515/nf-2017-A029

Feng, B., & Guo, T. (2020). Visceral pain from colon and rectum: the mechanotransduction and biomechanics. Journal of Neural Transmission, 127, 415–429. https://doi.org/10.1007/s00702-019-02088-8

Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: Frommechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019

Garvin, B., Lovely, L., Tsodikov, A., Minecan, D., Hong, S., & Wiley, J. W. (2010). Cortical and spinal evoked potential response to electrical stimulation in human rectum. World Journal of Gastroenterology, 16(43), 5440–5446. https://doi.org/10.3748/wjg.v16.i43.5440

Greenwood-Van Meerveld, B., Prusator, D. K., & Johnson, A. C. (2015). Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: Pathophysiology, translational relevance, and challenges. American Journal of Physiology - Gastrointestinal and Liver Physiology, 308(11), G885–G903. https://doi.org/10.1152/ajpgi.00463.2014

Hammer, O., Harper, D. A. T., & Ryan, P. D. (2018). PAST: Palaeontological statistics package for education and data analysis. Paleaeontol. Electron, 4(9).

Harrison, S., Bosin, T., & Maickel, R. (1974). Physiological disposition of atropine in the rat. Pharmacology Biochemistry and Behavior, 2, 843–845. https://doi.org/10.1016/0091-3057(74)90120-8

Heitler, W. J. (2007). DataView : A Tutorial Tool for Data Analysis . Template-based Spike Sorting and Frequency Analysis. The Journal of Undergraduate Neuroscience Education, 6(1), 1–7.

Johnson, A. C., Farmer, A. D., Ness, T. J., & Greenwood-Van Meerveld, B. (2020). Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterology and Motility, 32(4), 1–8. https://doi.org/10.1111/nmo.13776

Kimura, J. (2013). Electrodiagnosis in Diseases of Nerve and Muscle. Oxford University Press. https://doi.org/10.1093/med/9780199738687.001.0001

Lucarini, E., Parisio, C., Branca, J., Segnani, C., Ippolito, C., Pellegrini, C., Antonioli, L., Fornai, M., Micheli, L., Pacini, A., & Bernardini, N. (2020). Deepening the mechanisms of visceral pain persistence: An evaluation of the gut-spinal cord relationship. Cells, 9, 1772. https://doi.org/10.3390/cells9081772

Matsumoto, M., Xie, W., Inoue, M., & Ueda, H. (2007). Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Molecular Pain, 3, 41. https://doi.org/10.1186/1744-8069-3-41

Meléndez-Gallardo, J., & Eblen-Zajjur, A. (2016). Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials. Neurological Sciences, 37(9), 1491–1497. https://doi.org/10.1007/s10072-016-2613-y

Meléndez-Gallardo, J., & Eblen-Zajjur, A. (2018). Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation. Journal of Integrative Neuroscience, 17(3–4), 413–424. https://doi.org/10.3233/JIN-180076

Ng, S. C., Shi, H. Y., Hamidi, N., Underwood, F. E., Tang, W., Benchimol, E. I., Panaccione, R., Ghosh, S., Wu, J. C. Y., Chan, F. K. L., & others. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769–2778. https://doi.org/10.1016/s0140-6736(17)32448-0

Porter, R. J., Kalla, R., & Ho, G.-T. (2020). Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Research, 9. https://doi.org/10.12688/f1000research.20805.1

Regmi, B., & Shah, M. K. (2020). Possible implications of animal models for the assessment of visceral pain. Animal Models and Experimental Medicine, 3(3), 215–228. https://doi.org/10.1002/ame2.12130

Sarkar, S., Hobson, A. R., Furlong, P. L., Woolf, C. J., Thompson, D. G., & Aziz, Q. (2001). Central neural mechanisms mediating human visceral hypersensitivity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 281(5), G1196–G1202. https://doi.org/10.1152/ajpgi.2001.281.5.G1196

Shimoji, K. (1995). Origins and properties of spinal cord evoked potentials. Atlas of human spinal cord evoked potentials. Washington: Butterworth-Heinemann, 1-25. In M.R. Dimitrijevic & J.A. Halter (Eds.), Atlas of human spinal cord evoked potentials. (pp. 1–25). Butterworth-Heinemann.

Valenzuela, F., Rana, M., Sitaram, R., Uribe, S., & Eblen-Zajjur, A. (2021). Non-Invasive Functional Evaluation of the Human Spinal Cord by Assessing the Peri-Spinal Neurovascular Network with near Infrared Spectroscopy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2312–2321. https://doi.org/10.1109/TNSRE.2021.3123587

Wix-Ramos, R., & Eblen-Zajjur, A. (2011a). Time course of acute neuroprotective effects of lidocaine evaluated by brain impedanciometry in the global ischemia model. Pharmacology, 88(5–6), 316–321. https://doi.org/10.1159/000334274

Wix-Ramos, R., & Eblen-Zajjur, A. (2011b). Time course of acute neuroprotective effects of lithium carbonate evaluated by brain impedanciometry in the global ischemia model. Canadian Journal of Physiology and Pharmacology, 89(10), 753–758. https://doi.org/10.1139/y11-073

Yadav, S., Dave, M., Edakkanambeth, J Harmsen, W., Tremaine, W., Zinsmeister, A., Sweetser, S., Melton, L., Sandborn, W., & Loftus, E. (2015). A population-based study of incidence, risk factors, clinical spectrum, and outcomes of ischemic colitis. Clinical Gastroenterology and Hepatology, 13(4), 731–738. https://doi.org/10.1016/j.cgh.2014.07.061

Downloads

Published

2025-02-03

How to Cite

Duarte, M., Gallegos, M., Arveláez, A., & Eblen-Zajjur, A. (2025). Analysis of lumbar dorsal spinal potentials evoked by electrical stimulation of the colon and their changes induced by high-frequency stimulation or ischemia in rats . Neuroscience Research Notes, 8(1), 367.1–367.9. https://doi.org/10.31117/neuroscirn.v8i1.367