Transient prenatal ruxolitinib treatment promotes neurogenesis and suppresses astrogliogenesis during embryonic mouse brain development

Authors

  • Amirah Nabilah Abdullah Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.
  • Auni Fasihah Zamri Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.
  • Khairunnisa Alias Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.
  • Nur Munawwarah Azhar Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.
  • King Hwa Ling (2) Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia; (3) Brain and Mental Health Research Advancements and Innovations Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Malaysia; (4) Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia.
  • Pike See Cheah (3) Brain and Mental Health Research Advancements and Innovations Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Malaysia; (4) Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia; (5) Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.
  • Shahidee Zainal Abidin (1) Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia; (6) Biological Security and Sustainability (BIOSIS) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v8i1.352

Keywords:

Ruxolitinib, JAK-STAT pathway, Astrogliogenesis, Neurogenesis, Down syndrome

Abstract

Ruxolitinib is a Janus kinase (JAK) inhibitor that inhibits the JAK/STAT signalling pathway by targeting JAK1 and JAK2, which are crucial for regulating astrogliogenesis. This study assessed the effect of ruxolitinib (5 and 30 mg/kg/day) on developing mouse brains by administering it to pregnant mice from E7.5 to E20.5. No adverse effects were observed in the treated mice. The brains of P1.5 pups were collected, and RNA was extracted to assess markers of neurogenesis and astrogliogenesis through RT-qPCR. The results revealed a significant decrease in Gfap expression (p<0.0001) in both ruxolitinib-treated groups compared to the control, indicating a suppression of astrogliogenesis. Additionally, S100β expression (p<0.05) was significantly reduced in the 30 mg/kg ruxolitinib-treated group. In contrast, the expression of neuronal markers vGLuT1 (p<0.01) and vGLuT2 (p<0.01) increased significantly in the 30 mg/kg treated group, suggesting enhanced neuronal differentiation. Furthermore, 5 and 30 mg/kg ruxolitinib-treated groups showed a significant increase in GAT1 expression (p<0.01) compared to the control group. A marked decrease in Nestin expression was also observed in the 5 mg/kg (p<0.001) and 30 mg/kg (p<0.0001) treated groups. These findings demonstrate that transplacental administration of ruxolitinib modulates key markers involved in neuronal differentiation and gliogenesis in the developing mouse brain, suggesting its potential use in correcting imbalances in early brain development.

References

Abbink, M. R., van Deijk, A-L. F., Heine, V. M., Verheijen, M. H., & Korosi, A. (2019). The involvement of astrocytes in early‐life adversity induced programming of the brain. Glia, 67(9), 1637-1653. https://doi.org/10.1002/glia.23625.

Bellin, R. M., Sernett, S. W., Becker, B., Ip, W., Huiatt, T. W., & Robson, R. M. (1999). Molecular characteristics and interactions of the intermediate filament protein synemin. Journal of Biological Chemistry, 274(41), 29493–29499. https://doi.org/10.1074/jbc.274.41.29493

Dierssen, M. (2012). Down syndrome: The brain in trisomic mode. Nature Reviews Neuroscience, 13(12), 844–858. https://doi.org//10.1038/nrn3314

Eliasson, C., Sahlgren, C., Berthold, C., Stakeberg, J., Celis, J. E., Christer Betsholtz, Eriksson, J. E., & Pekny, M. (1999). Intermediate filament protein partnership in astrocytes. Journal of Biological Chemistry, 274(34), 23996–24006. https://doi.org/10.1074/jbc.274.34.23996

Filippov, V., Kronenberg, G., Pivneva, T., Reuter, K., Steiner, B., Wang, L. P., Yamaguchi, M., Kettenmann, H., & Kempermann, G. (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and Cellular Neuroscience, 23, 373–382. https://doi.org/10.1016/s1044-7431(03)00060-5

Haile, W. B., Gavegnano, C., Tao, S., Jiang, Y., Schinazi, R. F., & Tyor, W. R. (2016). The janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiology of Disease, 92, 137–143. https://doi.org/10.1016/j.nbd.2016.02.007

Lee, H. C., Hamzah, H., Melody Leong, P. Y., Md Yusof, H., Habib, O., Zainal Abidin, S., Amira Seth, E., Lim, S. M., Vidyadaran, S., Mohd Moklas, M. A., Abdullah, M. A., Nordin, N., Hassan, Z., Cheah, P.S., & Ling, K.H. (2021). Transient prenatal ruxolitinib treatment suppresses astrogenesis during development and improves learning and memory in adult mice. Scientific Reports, 11(1), 3847. https://doi.org/10.1038/s41598-021-83222-z

Lee, H. C., Tan, K. L., Cheah, P.-S. & Ling, K.-H (2016). Potential role of JAK-STAT signaling pathway in the neurogenic-to-gliogenic shift in Down syndrome brain. Neural Plasticity, 7434191. https://doi.org/10.1155/2016/7434191

Looyenga, B. D., Hutchings, D., Cherni, I., Kingsley, C., Weiss, G. J., & MacKeigan, J. P. (2012). STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS ONE, 7(2), e30820–e30820. https://doi.org/10.1371/journal.pone.0030820

Luu-The, V., Paquet, N., Calvo, E., & Cumps, J. (2005). Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques, 38(2), 287–93. https://doi.org/10.2144/05382RR05

Michetti, F., Clementi, M. C., Di Liddo, R., Valeriani, R., Ria, F., Rende, M., Di Sante, G., & Spica V. R. (2023). The S100B protein: A multifaceted pathogenic factor more than a biomarker. International Journal of Molecular Science, 24(11), 9605. https://doi.org/10.3390/ijms24119605

Mollo, N., Esposito, M., Aurilia, M., Scognamiglio, R., Accarino, R., Bonfiglio, F., Rita Cicatiello, R., Charalambous, M., Procaccini, C., Micillo, T., Genesio, R., Calì, G., Secondo, A., Paladino, S., Matarese, G., De Vita, G., Conti, A., Nitsch, L., & Izzo, A. (2021). Human trisomic iPSCs from Down syndrome fibroblasts manifest mitochondrial alterations early during neuronal differentiation. Biology, 10, 609. https://doi.org/10.3390/biology10070609

Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Åsa Wallén, Perlmann, T., Urban Lendahl, Christer Betsholtz, Berthold, C., & Frisén, J. (1999). Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. Journal of Cell Biology, 145(3), 503–514. https://doi.org/10.1083/jcb.145.3.503

Pekny, M., Eliasson, C., Chien, C.L., Kindblom, L.G., Liem, R., Hamberger, A., & Betsholtz, C. (1998). GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Experiment Cell Research, 239, 332–343. https://doi.org/10.1006/excr.1997.3922

Puschmann, T. B., Zanden, C., De Pablo, Y., Kirchhoff, F., Pekna, M., Liu, J., & Pekny, M. (2013). Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia, 61, 432–440. https://doi.org/10.1002/glia.22446

Steinert, P. M., Ying Hao Chou, Veena Prahlad, Parry, D., Marekov, L. N., Wu, K. C., Jang, S., & Goldman, R. D. (1999). A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Journal of Biological Chemistry, 274(14), 9881–9890. https://doi.org/10.1074/jbc.274.14.9881

Thomsen, R., Pallesen, J., Daugaard, T.F., Børglum, A.D., & Nielsen, A.L. (2013). Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia, 61, 1922-1937. https://doi.0rg/10.1002/glia.22569.

Wörmann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Görgülü, K., Ruess, D., Campbell, A., Doglioni, C., Jodrell, D., Neesse, A., Demir, I. E., Karpathaki, A. P., Barenboim, M., Hagemann, T., Rose-John, S., Sansom, O., Schmid, R. M., Protti, M. P., Lesina, M., & Algül, H. (2016). Loss of p53 function activates JAK2–STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151(1), 180-193.e12. https://doi.org/10.1053/j.gastro.2016.03.010

Downloads

Published

2025-02-02

How to Cite

Abdullah, A. N., Fasihah Zamri, A., Alias, K., Azhar, N. M., Ling, K. H., Cheah, P. S., & Zainal Abidin, S. (2025). Transient prenatal ruxolitinib treatment promotes neurogenesis and suppresses astrogliogenesis during embryonic mouse brain development. Neuroscience Research Notes, 8(1), 352.1–352.7. https://doi.org/10.31117/neuroscirn.v8i1.352