The expression profile of miR-3099 during neural development of Ts1Cje mouse model of Down syndrome
DOI:
https://doi.org/10.31117/neuroscirn.v4i1.62Keywords:
miR-3099, Ts1Cje, Down syndrome, microRNAAbstract
MicroRNA-3099 (miR-3099) plays a crucial role in regulating neuronal differentiation and development of the central nervous system (CNS). The miR-3099 is a pro-neuronal miRNA that promotes neural stem/progenitor cell (NSPC) differentiation into neuronal lineage by suppressing astrogliogenesis. Down syndrome (DS) brain exhibited increased astrogliogenesis and reduced neuronal cell density. The involvement of miR-3099 in the neurodevelopment of DS has not been investigated and potentially responsible for the neurogenic-to-gliogenic shift phenomenon observed in DS brain. To investigate the role of miR-3099 during DS brain development, neural/progenitor cell proliferation and differentiation, we profiled miR-3099 expression level in the Ts1Cje, a mouse model for DS. We analysed the Ts1Cje whole brain at embryonic day (E) 10.5, E14.5 and P1.5, proliferating neurospheres and differentiating neurospheres at 3, 9 and 15 days in vitro (DIV). Expression of miR-3099 in both the developing mouse brain and the differentiating neurosphere was not significantly different between Ts1Cje and wild type controls. In contrast, the expression level of miR-3099 was significantly higher (p<0.05) in proliferating NSPC derived from the Ts1Cje compared to wild-type. Further molecular profiling of NPSC and glial cell markers indicated that the expression of Sox2 (p<0.01) and Gfap (p<0.05) were significantly downregulated in Ts1Cje neurospheres as compared to that of wild type, respectively. While there were no significant differences in Tuj1 and Nestin expression levels between the Ts1Cje and wild type neurospheres, their expression levels were ~3-fold upregulated and ~2.6 downregulated Ts1Cje group, respectively. The findings suggest that dysregulation of miR-3099 affects NSPC lineage commitment as indicated by altered postmitotic neuronal cell markers. Further molecular characterisation and gene expression profiling of other neuronal and glial markers will help refine the analysis of gene-gene interactions underlying the neuropathologies of DS.
References
Abidin, S. Z., Abbaspourbabaei, M., Ntimi, C. M., Siew, W. H., Cheah, P. S., Rosli, R., Nordin, N., & Ling, K. H. (2014). MIR-3099 is overexpressed in differentiating 46c mouse embryonic stem cells upon neural induction. Malaysian Journal of Medical Sciences, 21, 26–32.
Abidin, S. Z., Leong, J.-W., Mahmoudi, M., Nordin, N., Abdullah, S., Cheah, P.-S., & Ling, K.-H. (2017). In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain. Neuroscience Bulletin, 33(4), 373–382. https://doi.org/10.1007/s12264-017-0143-0
Ábrahám, H., Vincze, A., Veszprémi, B., Kravják, A., Gömöri, É., Kovács, G. G., & Seress, L. (2012). Impaired myelination of the human hippocampal formation in Down syndrome. International Journal of Developmental Neuroscience, 30(2), 147–158. https://doi.org/10.1016/j.ijdevneu.2011.11.005
Antonarakis, S. E., Skotko, B. G., Rafii, M. S., Strydom, A., Pape, S. E., Bianchi, D. W., Sherman, S. L., & Reeves, R. H. (2020). Down syndrome. Nature Reviews Disease Primers, 6(1), 1–20. https://doi.org/10.1038/s41572-019-0143-7
Aylward, E. H., Li, Q., Honeycutt, N. A., Warren, A. C., Pulsifer, M. B., Barta, P. E., Chan, M. D., Smith, P. D., Jerram, M., & Pearlson, G. D. (1999). MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia. American Journal of Psychiatry, 156(4), 564–568. https://doi.org/10.1176/ajp.156.4.564
Baburamani, A. A., Vontell, R. T., Uus, A., Pietsch, M., Patkee, P. A., Wyatt-Ashmead, J., Chin-Smith, E. C., Supramaniam, V. G., Donald Tournier, J., Deprez, M., & Rutherford, M. A. (2020). Assessment of radial glia in the frontal lobe of fetuses with down syndrome. Acta Neuropathologica Communications, 8(1), 141. https://doi.org/10.1186/s40478-020-01015-3
Bakshi, R., Hassan, M. Q., Pratap, J., Lian, J. B., Montecino, M. A., van Wijnen, A. J., Stein, J. L., Imbalzano, A. N., & Stein, G. S. (2010). The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. Journal of Cellular Physiology, 225(2), 569–576. https://doi.org/10.1002/jcp.22240
Briggs, J. A., Sun, J., Shepherd, J., Ovchinnikov, D. A., Chung, T. L., Nayler, S. P., Kao, L. P., Morrow, C. A., Thakar, N. Y., Soo, S. Y., Peura, T., Grimmond, S., & Wolvetang, E. J. (2013). Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells, 31(3), 467–478. https://doi.org/10.1002/stem.1297
Brunamonti, E., Pani, P., Papazachariadis, O., Onorati, P., Albertini, G., & Ferraina, S. (2011). Cognitive control of movement in down syndrome. Research in Developmental Disabilities, 32(5), 1792–1797. https://doi.org/10.1016/j.ridd.2011.03.008
Chen, C., Jiang, P., Xue, H., Peterson, S. E., Tran, H. T., McCann, A. E., Parast, M. M., Li, S., Pleasure, D. E., Laurent, L. C., Loring, J. F., Liu, Y., & Deng, W. (2014). Role of astroglia in down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nature Communications, 5, 4430. https://doi.org/10.1038/ncomms5430
Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., Heater, S., Barbacioru, C., Steptoe, A. L., Martin, H. C., Nourbakhsh, E., Krishnan, K., Gardiner, B., Wang, X., Nones, K., Steen, J. A., Matigian, N. A., Wood, D. L., Kassahn, K. S., Waddell, N., … Grimmond, S. M. (2011). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 12(12), R126. https://doi.org/10.1186/gb-2011-12-12-r126
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716. https://doi.org/10.1016/S0092-8674(00)80783-7
Doetsch, Fiona. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6(11), 1127–1134. https://doi.org/10.1038/nn1144
Ferri, A. L. M., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P. P., Sala, M., DeBiasi, S., & Nicolis, S. K. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15), 3805–3819. https://doi.org/10.1242/dev.01204
Galdzicki, Z., Siarey, R., Pearce, R., Stoll, J., & Rapoport, S. I. (2001). On the cause of mental retardation in Down syndrome: Extrapolation from full and segmental trisomy 16 mouse models. Brain Research Reviews, 35(2), 115–145. https://doi.org/10.1016/S0926-6410(00)00074-4
Herault, Y., Delabar, J. M., Fisher, E. M. C., Tybulewicz, V. L. J., Yu, E., & Brault, V. (2017). Rodent models in Down syndrome research: Impact and future opportunities. DMM Disease Models and Mechanisms, 10(10), 1165–1186. https://doi.org/10.1242/dmm.029728
Hewitt, C.A., Ling, K.-H., Merson, T. D., Simpson, K. M., Ritchie, M. E., King, S. L., Pritchard, M. A., Smyth, G. K., Thomas, T., Scott, H. S., & Voss, A. K. (2010). Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of down syndrome. PLoS ONE, 5(7), e11561. https://doi.org/10.1371/journal.pone.0011561
Huang, H., Rambaldi, I., Daniels, E., & Featherstone, M. (2003). Expression of theWdr9 gene and protein products during mouse development. Developmental Dynamics, 227(4), 608–614. https://doi.org/10.1002/dvdy.10344
Huang, T. T., Yasunami, M., Carlson, E. J., Gillespie, A. M., Reaume, A. G., Hoffman, E. K., Chan, H. P., Scott, R. W., & Epstein, C. J. (1997). Superoxide-mediated cytotoxicity in superoxide dismutatse-deficient fetal fibroblasts. Archives of Biochemistry and Biophysics, 344(2), 424-432. https://doi.org/10.1006/abbi.1997.0237
Hultén, M. A., Patel, S., Jonasson, J., & Iwarsson, E. (2010). On the origin of the maternal age effect in trisomy 21 Down syndrome: The oocyte mosaicism selection model. Reproduction, 139(1), 1–9. https://doi.org/10.1530/REP-09-0088
Lee, H.-C., Tan, K.-L., Cheah, P.-S., & Ling, K.-H. (2016). Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plasticity, 2016, 7434191. https://doi.org/10.1155/2016/7434191
Lee, H. C., Md Yusof, H. H., Leong, M. P. Y., Zainal Abidin, S., Seth, E. A., Hewitt, C. A., Vidyadaran, S., Nordin, N., Scott, H. S., Cheah, P. S., & Ling, K. H. (2019). Gene and protein expression profiles of JAK-STAT signalling pathway in the developing brain of the Ts1Cje down syndrome mouse model. International Journal of Neuroscience, 129(9), 871–881. https://doi.org/10.1080/00207454.2019.1580280
Ling, K.-H., Brautigan, P. J., Hahn, C. N., Daish, T., Rayner, J. R., Cheah, P., Raison, J. M., Piltz, S., Mann, J. R., Mattiske, D. M., Thomas, P. Q., Adelson, D. L., & Scott, H. S. (2011). Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics, 12, 176. https://doi.org/10.1186/1471-2164-12-176
Ling, K. H., Hewitt, C. A., Beissbarth, T., Hyde, L., Banerjee, K., Cheah, P. S., Cannon, P. Z., Hahn, C. N., Thomas, P. Q., Smyth, G. K., Tan, S. S., Thomas, T., & Scott, H. S. (2009). Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling. Genome Biology, 10(10), R104. https://doi.org/10.1186/gb-2009-10-10-r104
Lockrow, J. P., Fortress, A. M., & Granholm, A. C. E. (2012). Age-related neurodegeneration and memory loss in down syndrome. Current Gerontology and Geriatrics Research, 2012, 463909. https://doi.org/10.1155/2012/463909
Luu-The, V., Paquet, N., Calvo, E., & Cumps, J. (2005). Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. BioTechniques, 38(2), 287–293. https://doi.org/10.2144/05382RR05
Mégarbané, A., Noguier, F., Stora, S., Manchon, L., Mircher, C., Bruno, R., Dorison, N., Pierrat, F., Rethoré, M. O., Trentin, B., Ravel, A., Morent, M., Lefranc, G., & Piquemal, D. (2013). The intellectual disability of trisomy 21: Differences in gene expression in a case series of patients with lower and higher IQ. European Journal of Human Genetics, 21(11), 1253–1259. https://doi.org/10.1038/ejhg.2013.24
Menghini, D., Costanzo, F., & Vicari, S. (2011). Relationship between brain and cognitive processes in down syndrome. Behavior Genetics, 41(3), 381–393. https://doi.org/10.1007/s10519-011-9448-3
Moldrich, R. X., Dauphinot, L., Laffaire, J., Vitalis, T., Hérault, Y., Beart, P. M., Rossier, J., Vivien, D., Gehrig, C., Antonarakis, S. E., Lyle, R., & Potier, M. C. (2009). Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres. Journal of Neuroscience Research, 87(14), 3143–3152. https://doi.org/10.1002/jnr.22131
Moser, H. W. (1999). Dendritic anomalies in disorders associated with mental retardation. Developmental Neuropsychology, 16(3), 369–371. https://doi.org/10.1207/S15326942DN1603_18
Mutton, D., Alberman, E., & Hook, E. B. (1996). Cytogenetic and epidemiological findings in Down syndrome, England and Wales 1989 to 1993. Journal of Medical Genetics, 33(5), 387–394. https://doi.org/10.1136/jmg.33.5.387
Organisation, W. H. (2019). No Title. Gene and Human Disease: Down Syndrome. https://www.who.int/genomics/public/geneticdiseases/en/index1.html
Pinter, J. D., Eliez, S., Schmitt, J. E., Capone, G. T., & Reiss, A. L. (2001). Neuroanatomy of Down's syndrome: A high-resolution MRI study. American Journal of Psychiatry, 158(10), 1659–1665. https://doi.org/10.1176/appi.ajp.158.10.1659
Pletcher, M. T., Wiltshire, T., Cabin, D. E., Villanueva, M., & Reeves, R. H. (2001). Use of comparative physical and sequence mapping to annotate mouse chromosome 16 and human chromosome 21. Genomics, 74(1), 45–54. https://doi.org/10.1006/geno.2001.6533
Reiche, L., Küry, P., & Göttle, P. (2019). Aberrant Oligodendrogenesis in Down Syndrome: Shift in Gliogenesis? Cells, 8(12), 1591. https://doi.org/10.3390/cells8121591
Ren, S., Peng, Z., Mao, J.-H., Yu, Y., Yin, C., Gao, X., Cui, Z., Zhang, J., Yi, K., Xu, W., Chen, C., Wang, F., Guo, X., Lu, J., Yang, J., Wei, M., Tian, Z., Guan, Y., Tang, L., … Sun, Y. (2012). RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Research, 22(5), 806–821. https://doi.org/10.1038/cr.2012.30
Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., Mobley, W. C., Epstein, C. J., & Huang, T. T. (1998). Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6256–6261. https://doi.org/10.1073/pnas.95.11.6256
Seth, E. A., Lee, H.-C., Yusof, H. H. bin M., Nordin, N., Cheah, Y. K., Ho, E. T. W., Ling, K.-H., & Cheah, P.-S. (2020). Phenotype microarrays reveal metabolic dysregulations of neurospheres derived from embryonic Ts1Cje mouse model of Down syndrome. PLOS ONE, 15(7), e0236826. https://doi.org/10.1371/journal.pone.0236826
Sherwood, R. I., Maehr, R., Mazzoni, E. O., & Melton, D. A. (2011). Wnt signaling specifies and patterns intestinal endoderm. Mechanisms of Development, 128(7–10), 387–400. https://doi.org/10.1016/J.MOD.2011.07.005
Stagni, F., Giacomini, A., Emili, M., Guidi, S., & Bartesaghi, R. (2018). Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radical Biology and Medicine, 114, 15–32. https://doi.org/10.1016/j.freeradbiomed.2017.07.026
Vacano, G. N., Duval, N., & Patterson, D. (2012). The use of mouse models for understanding the biology of down syndrome and aging. Current Gerontology and Geriatrics Research, 2012, 717315. https://doi.org/10.1155/2012/717315
Wisniewski, K. E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics, 7(SUPPL. 7), 274–281. https://doi.org/10.1002/ajmg.1320370755
Yusof, H. H., Lee, H. C., Seth, E. A., Wu, X., Hewitt, C. A., Scott, H. S., Cheah, P. S., Li, Y. M., Chau, D. M., & Ling, K. H. (2019). Expression Profiling of Notch Signalling Pathway and Gamma-Secretase Activity in the Brain of Ts1Cje Mouse Model of Down Syndrome. Journal of Molecular Neuroscience, 67(4), 632–642. https://doi.org/10.1007/s12031-019-01275-2
Zainal Abidin, S., Fam, S. Z., Chong, C. E., Abdullah, S., Cheah, P. S., Nordin, N., & Ling, K. H. (2019). miR-3099 promotes neurogenesis and inhibits astrogliogenesis during murine neural development. Gene, 697, 201–212. https://doi.org/10.1016/j.gene.2019.02.014
Zdaniuk, G., Wierzba-Bobrowicz, T., Szpak, G. M., & Stȩpień, T. (2011). Astroglia disturbances during development of the central nervous system in fetuses with Down's syndrome. Folia Neuropathologica, 49(2), 109–114.
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Shahidee Zainal Abidin, Han-Chung Lee, Syahril Abdullah, Norshariza Nordin, Pike-See Cheah, King-Hwa Ling

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.