The impact of minocycline in inhibiting glial scar formation in rats with traumatic brain injury: A mini scoping review
DOI:
https://doi.org/10.31117/neuroscirn.v7i4.329Keywords:
Minocycline, Glial scar, Central nervous system disease, Traumatic brain injury, RatsAbstract
Minocycline, a second-generation tetracycline derivative, is proven to inhibit glial scar formation in several neurological diseases. However, studies associating micocycline in traumatic brain injury (TBI) is very limited. This review aims to determine the role of minocycline in inhibiting glial scar or astrogliosis formation in TBI animal models. This scoping review includes original studies in PubMed, Science Direct, and Google Scholar databases published between 1 January 2012 to 31 December 2022, in full text, involving rodent research, and written in English. Two authors who followed the Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines, conducted the assessment independently. Of 2687 studies, 13 studies are reviewed. Two studies describe the benefits of minocycline in inhibiting glial scar formation in TBI, while 11 studies show that minocycline inhibits glial scar formation in diseases other than TBI. An explanation of the signaling pathways and cells involved in the mechanism of glial scar inhibition by minocycline can be found in ten articles, of which four observe the role of microglial cells, four observe the role of astrocyte cells, and two do not explain the mechanism. Research on the impact of minocycline in inhibiting glial scar formation in rats with TBI is limited. The results of this review support early research on the role of minocycline in inhibiting glial scar or astrogliosis in TBI, and similar studies in several other CNS diseases support this. However, the mechanism of minocycline's inhibitory pathway to glial scarring remains unclear.
References
Ahmed, S., Venigalla, H., Mekala, H. M., Dar, S., Hassan, M., & Ayub, S. (2017). Traumatic brain injury and neuropsychiatric complications. Indian Journal of Psychological Medicine, 39(2), 114–121. https://doi.org/10.4103/0253-7176.203129
Cai, Z. Y., Yan, Y., & Chen, R. (2010). Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neuroscience Bulletin, 26(1), 28–36. https://doi.org/10.1007/s12264-010-0818-2
Erning, K., & Segura, T. (2020). Materials to promote recovery after stroke. Current Opinion in Biomedical Engineering, 14, 9–17. https://doi.org/10.1016/j.cobme.2020.04.002
Galgano, M., Toshkezi, G., Qiu Xuecheng, Russel, T., Chin, L., & Zhao, L.-R. (2017). Traumatic Brain Injury: Current treatment strategies and future endeavors. Cell Transplantation, 26(7), 1118–1130. https://doi.org/10.1177/0963689717714102
Hayn, L., Deppermann, L., & Koch, M. (2017). Reduction of the foreign body response and neuroprotection by apyrase and minocycline in chronic cannula implantation in the rat brain. Clinical and Experimental Pharmacology and Physiology, 44(2), 313–323. https://doi.org/10.1111/1440-1681.12703
Hsuchou, H., Kastin, A. J., & Pan, W. (2012). Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. Journal of Molecular Neuroscience, 47(2), 267–277. https://doi.org/10.1007/s12031-012-9734-4
James, S. L., Bannick, M. S., Montjoy-Venning, W. C., Lucchesi, L. R., Dandona, L., Dandona, R., Hawley, C., Hay, S. I., Jakovljevic, M., Khalil, I., Krohn, K. J., Mokdad, A. H., Naghavi, M., Nichols, E., Reiner, R. C., Smith, M., Feigin, V. L., Vos, T., Murray, C. J. L., … Zaman, S. B. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0
Ji, M. H., Lei., L., Gao, D. P., Tong, J. H., Wang, Y., & Yang, J. J. (2020). Neural network disturbance in the medial prefrontal cortex might contribute to cognitive impairments induced by neuroinflammation. Brain, Behavior, and Immunity, 89, 133–144. https://doi.org/10.1016/j.bbi.2020.06.001
Ji, X., Peng, D., Zhang, Y., Zhang, J., Wang, Y., Gao, Y., Lu, N., & Tang, P. (2017). Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Research, 1659, 88–95. https://doi.org/10.1016/j.brainres.2016.12.031
Jin, W. J., Feng, S. W., Feng, Z., Lu, S. M., Qi, T., & Qian, Y. N. (2013). Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. NeuroReport, 25(1), 1–6. https://doi.org/10.1097/WNR.0000000000000082
Lam, T. I., Bingham, D., Chang, T. J., Lee, C. C., Shi, J., Wang, D., Massa, S., Swanson, R. A., & Liu, J. (2013). Beneficial effects of minocycline and botulinum toxin-induced constraint physical therapy following experimental traumatic brain injury. Neurorehabilitation and Neural Repair, 27(9), 889–899. https://doi.org/10.1177/1545968313491003
Leibinger, M., Andreadaki, A., Diekmann, H., & Fischer, D. (2013). Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death and Disease, 4(9). https://doi.org/10.1038/cddis.2013.310
Meythaler, J., Fath, J., Fuerst, D., Zokary, H., Freese, K., Martin, H. B., Reineke, J., Peduzzi-Nelson, J., & Roskos, P. T. (2019). Safety and feasibility of minocycline in treatment of acute traumatic brain injury. Brain Injury, 33(5), 679–689. https://doi.org/10.1080/02699052.2019.1566968
Mohamadpour, M., Whitney, K., & Bergold, P. J. (2019). The importance of therapeutic time window in the treatment of traumatic brain injury. Frontiers in Neuroscience, 13, 7. https://doi.org/10.3389/fnins.2019.00007
Ng, S. Y., & Lee, A. Y. W. (2019). Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Frontiers in Cellular Neuroscience, 13, 528. https://doi.org/10.3389/fncel.2019.00528
Ogawa, Y., Sano, T., Irisa, M., Kodama, T., Saito, T., Furusawa, E., Kaizu, K., Yanagi, Y., Tsukimura, T., Togawa, T., Yamanaka, S., Itoh, K., Sakuraba, H., & Oishi, K. (2017). FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Scientific Reports, 7. https://doi.org/10.1038/srep40518
Pechacek, K. M. (2020). Minocycline as a treatment for traumatic brain injury-induced impulsive and attentional deficits impulsive and attentional deficits. [Master’s Thesis, Eberly College of Arts and Sciences]
Pourkhodadad, S., Oryan, S., Kaka, G., & Sadraie, S. H. (2018). Neuroprotective effects of combined treatment with minocycline and olfactory ensheathing cells transplantation against inflammation and oxidative stress after spinal cord injury. Cell Journal, 21(2), 220–228. https://doi.org/10.22074/cellj.2019.6126
Sadick, J. S., & Liddelow, S. A. (2019). Don't forget astrocytes when targeting Alzheimer's disease. British Pharmacological Society, 176, 3585–3598. https://doi.org/10.1111/bph.14568
Sano, F., Shigetomi, E., Shinozaki, Y., Tsuzukiyama, H., Saito, K., Mikoshiba, K., Horiuchi, H., Cheung, D. L., Nabekura, J., Sugita, K., Aihara, M., & Koizumi, S. (2021). Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight, 6(9), e135391. https://doi.org/10.1172/jci.insight.135391
Shah, S. Z. A., Zhao, D., Taglialatela, G., Hussain, T., Dong, H., Sabir, N., Mangi, M. H., Wu, W., Lai, M., Zhang, X., Duan, Y., Wang, L., Zhou, X., & Yang, L. (2019). Combinatory FK506 and minocycline treatment alleviates prion-induced neurodegenerative events via caspase-mediated MAPK-NRF2 pathway. International Journal of Molecular Sciences, 20(5). https://doi.org/10.3390/ijms20051144
Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F., & Koizumi, S. (2017). Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation. Cell Reports, 19(6), 1151–1164. https://doi.org/10.1016/j.celrep.2017.04.047
Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7–35. https://doi.org/10.1007/s00401-009-0619-8
Song, Z. P., Xiong, B. R., Guan, X. H., Cao, F., Manyande, A., Zhou, Y. Q., Zheng, H., & Tian, Y. K. (2016). Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacologica Sinica, 37(6), 753–762. https://doi.org/10.1038/aps.2016.1
Squair, J. W., Ruiz, I., Phillips, A. A., Zheng, M. M. Z., Sarafis, Z. K., Sachdeva, R., Gopaul, R., Liu, J., Tetzlaff, W., West, C. R., & Krassioukov, A. V. (2018). Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. Journal of Neurotrauma, 35(24), 2861–2871. https://doi.org/10.1089/neu.2018.5703
Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Wardhana, D. W., Yudhanto, H. S., Riawan, W., Khotimah, H., Permatasari, H. K., Nazwar, T. A., & Nurdiana, N. (2023). Modification of the height of a weight drop traumatic brain injury model that causes the formation of glial scar and cognitive impairment in rats. BMC Neurology, 23(1), 439. https://doi.org/10.1186/s12883-023-03494-y
Xu, H., Tan, G., Zhang, S., Zhu, H., Liu, F., Huang, C., Zhang, F., & Wang, Z. (2012). Minocycline reduces reactive gliosis in the rat model of hydrocephalus. BMC Neuroscience, 13(1). https://doi.org/10.1186/1471-2202-13-148
Zhou, Y., Shao, A., Yao, Y., Tu, S., Deng, Y., & Zhang, J. (2020). Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Communication and Signaling, 18(1), 62. https://doi.org/10.1186/s12964-020-00549-2
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Donny Wisnu Wardhana, Husnul Khotimah, Tommy Alfandy Nazwar, Nurdiana Nurdiana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.