The chronic cerebral hypoperfusion model induces proinflammatory cascades in Alzheimer's disease

Authors

  • Zahra Abedi Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Hamidon Basri Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
  • Liyana Najwa Inche Mat Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Huzwah Khaza'ai Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Razana Binti Mohd Ali Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia

DOI:

https://doi.org/10.31117/neuroscirn.v7i2.315

Keywords:

Chronic cerebral hypoperfusion, PBOCCA, Alzheimer's disease, Neuroinflammation, Inflammasome, Learning and memory

Abstract

Cerebral neuroinflammation has emerged as a significant pathway contributing to the progression of Alzheimer's disease (AD) pathology. Research implicates the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome complex, initiating caspase 1-mediated maturation of interleukin-1 β (IL-1β) and interleukin-18 (IL-18). This study investigates whether chronic cerebral hypoperfusion (CCH), induced via permanent bilateral occlusion of the common carotid arteries (PBOCCA), leads to cognitive dysfunction and NLRP3 inflammasome activation. Twenty male Sprague Dawley (SD) rats underwent PBOCCA to induce CCH. Two weeks post-surgery, locomotor and Morris water maze (MWM) tests were conducted to examine motor functions, spatial learning, and memory, respectively. The gene expression levels of cathepsin B, NLRP3, an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 were analysed using real-time PCR, while the expression levels of the inflammatory cytokines were estimated using the ELISA method. Structural damage to the hippocampus was assessed using hematoxylin and eosin (HE) staining. Escape latencies and time spent in specific quadrants in PBOCCA significantly increased compared to sham-operated animals. There was no notable difference in locomotor activity between the PBOCCA and sham-operated groups. The number of pyknotic neurons with cytoplasmic shrinkage increased in the hippocampus. Gene expression of cathepsin B, NLRP3, ASC, and caspase-1 was upregulated in the PBOCCA group. The expression levels of IL-1β, IL-18, interleukin-6 (IL-6), and amyloid-β 1-42 (Aβ 1-42) were elevated in the PBOCCA group relative to sham. The findings confirm NLRP3 inflammasome induction, cognitive dysfunction, and inflammatory cytokines associated with AD and cerebral ischemia. The PBOCCA model provides a valuable tool for studying neurodegenerative including AD.

References

Abaricia, J. O., Farzad, N., Heath, T. J., Simmons, J., Morandini, L., & Olivares-Navarrete, R. (2021). Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomaterialia, 133, 58–73. https://doi.org/10.1016/j.actbio.2021.04.021

Ahad, M. A., Chear, N. J., Keat, L. G., Has, A. T. C., Murugaiyah, V., & Hassan, Z. (2023). Bio-enhanced fraction from Clitoria ternatea root extract ameliorates cognitive functions and in vivo hippocampal neuroplasticity in chronic cerebral hypoperfusion rat model. Ageing Research Reviews, 89, 101990. https://doi.org/10.1016/j.arr.2023.101990

Ahad, M. A., Kumaran, K. R., Tiang, N., Mansor, N. I., Effendy, M. A., Damodaran, T., Lingam, K., Wahab, H. A., Nordin, N., Liao, P., Müller, C. P., & Hassan, Z. (2020). Insights into the neuropathology of cerebral ischemia and its mechanisms. Reviews in the Neurosciences, 31(5), 521–538. https://doi.org/10.1515/revneuro-2019-0099

Bhuvanendran, S., Bakar, S. N. S., Kumari, Y., Othman, I., Shaikh, M. F., & Hassan, Z. (2019). Embelin improves the spatial memory and hippocampal long-term potentiation in a rat model of chronic cerebral hypoperfusion. Scientific Reports, 9, 14507. https://doi.org/10.1038/s41598-019-50954-y

Biasizzo, M., & Kopitar-Jerala, N. (2020). Interplay between NLRP3 inflammasome and autophagy. Frontiers in Immunology, 11, 591803. https://doi.org/10.3389/fimmu.2020.591803

Calabrese, E. J., Giordano, J., Kozumbo, W. J., Leak, R. K., & Bhatia, T. N. (2018). Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacological Research, 137, 236–249. https://doi.org/10.1016/j.phrs.2018.10.010

Cao, Z., Wang, Y., Long, Z., & He, G. (2019). Interaction between autophagy and the NLRP3 inflammasome. Acta Biochimica Et Biophysica Sinica, 51(11), 1087–1095. https://doi.org/10.1093/abbs/gmz098

Cechetti, F., De Souza Pagnussat, A., Worm, P. V., Elsner, V. R., Ben, J., Da Costa, M. S., Mestriner, R. G., Weis, S. N., & Netto, C. A. (2012). Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Research Bulletin, 87(1), 109–116. https://doi.org/10.1016/j.brainresbull.2011.10.006

Chen, D., Xu, F., & Zhu, Z. (2022). Progress in the correlation of postoperative cognitive dysfunction and Alzheimer’s disease and the potential therapeutic drug exploration. Ibrain, 9(4), 446–462. https://doi.org/10.1002/ibra.12040

Cheon, S. Y., Kim, J., Kim, S. Y., Kim, E. J., & Koo, B. (2020). Inflammasome and cognitive symptoms in human diseases: biological evidence from experimental research. International Journal of Molecular Sciences, 21(3), 1103. https://doi.org/10.3390/ijms21031103

Damodaran, T., Cheah, P., Murugaiyah, V., & Hassan, Z. (2020). The nootropic and anticholinesterase activities of Clitoria ternatea Linn. root extract: Potential treatment for cognitive decline. Neurochemistry International, 139, 104785. https://doi.org/10.1016/j.neuint.2020.104785

Damodaran, T., Hassan, Z., Navaratnam, V., Mustapha, M., Ng, G., Müller, C. P., Liao, P., & Dringenberg, H. C. (2014). Time course of motor and cognitive functions after chronic cerebral ischemia in rats. Behavioural Brain Research, 275, 252–258. https://doi.org/10.1016/j.bbr.2014.09.014

Deiana, S., Platt, B., & Riedel, G. (2011). The cholinergic system and spatial learning. Behavioural Brain Research, 221(2), 389–411. https://doi.org/10.1016/j.bbr.2010.11.036

Farkas, E., Luiten, P., & Bari, F. (2007). Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Research Reviews, 54(1), 162–180. https://doi.org/10.1016/j.brainresrev.2007.01.003

Hanslik, K. L., & Ulland, T. K. (2020). The role of microglia and the NLRP3 inflammasome in Alzheimer’s disease. Frontiers in Neurology, 11, 570711. https://doi.org/10.3389/fneur.2020.570711

Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297(5580), 353–356. https://doi.org/10.1126/science.1072994

Hazalin, N. A. M. N., Liao, P., & Hassan, Z. (2020). TRPM4 inhibition improves spatial memory impairment and hippocampal long-term potentiation deficit in chronic cerebral hypoperfused rats. Behavioural Brain Research, 393, 112781. https://doi.org/10.1016/j.bbr.2020.112781

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T., Gelpí, E., Halle, A., Körte, M., Latz, E., & Golenbock, D. T. (2012). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674–678. https://doi.org/10.1038/nature11729

Kitaguchi, H., Tomimoto, H., Ihara, M., Shibata, M., Uemura, K., Kalaria, R., Kihara, T., Asada-Utsugi, M., Kinoshita, A., & Takahashi, R. (2009). Chronic cerebral hypoperfusion accelerates amyloid β deposition in APPSwInd transgenic mice. Brain Research, 1294, 202–210. https://doi.org/10.1016/j.brainres.2009.07.078

Kumaran, K. R., Wahab, H. A., & Hassan, Z. (2021). In vitro anti-cholinesterase activity and in vivo screening of Coccoloba uvifera, Mimusops elengi and Syzygium aqueum extracts on learning and memory function of chronic cerebral hypoperfusion rat. Neuroscience Research Notes, 4(2), 1–13. https://doi.org/10.31117/neuroscirn.v4i2.71

Kumaran, K. R., Wahab, H. A., & Hassan, Z. (2022). Nootropic effect of Syzygium polyanthum (Wight) Walp leaf extract in chronic cerebral hypoperfusion rat model via cholinergic restoration: a potential therapeutic agent for dementia. Advances in Traditional Medicine, 23(3), 833–850. https://doi.org/10.1007/s13596-022-00653-3

Kumaran, K. R., Yunusa, S., Perimal, E. K., Wahab, H. A., Müller, C. P., & Hassan, Z. (2023). Insights into the pathophysiology of Alzheimer’s disease and potential therapeutic targets: A current perspective. Journal of Alzheimer’s Disease, 91(2), 507–530. https://doi.org/10.3233/jad-220666

Lee, C. H., Park, J. H., Ahn, J. H., & Won, M. (2016). Effects of melatonin on cognitive impairment and hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Experimental and Therapeutic Medicine, 11(6), 2240–2246. https://doi.org/10.3892/etm.2016.3216

Lee, J. M., Lee, J. H., Song, M. K., & Kim, Y. J. (2021). NXP031 improves cognitive impairment in a chronic cerebral hypoperfusion-induced vascular dementia rat model through Nrf2 signaling. International Journal of Molecular Sciences, 22(12), 6285. https://doi.org/10.3390/ijms22126285

Li, D., Fan, H., Yang, R., Li, Y., Zhang, F., & Shi, J. (2022). Dendrobium nobile lindl. alkaloid suppresses NLRP3-mediated pyroptosis to alleviate LPS-induced neurotoxicity. Frontiers in Pharmacology, 13, 846541. https://doi.org/10.3389/fphar.2022.846541

Lin, H., Zhang, J., Dai, Y., Liu, H., He, X., Chen, L., Tao, J., Li, C., & Li, W. (2023). Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion. Journal of Sport and Health Science, 12(1), 116–129. https://doi.org/10.1016/j.jshs.2022.01.008

Lučiūnaitė, A., McManus, R. M., Jankunec, M., Rácz, I., Dansokho, C., Dalgėdienė, I., Schwartz, S., Brosseron, F., & Heneka, M. T. (2020). Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry, 155(6), 650–661. https://doi.org/10.1111/jnc.14945

Mathys, H., Dávila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., Menon, M., He, L., Abdurrob, F., Jiang, X., Martorell, A. J., Ransohoff, R. M., Hafler, B. P., Bennett, D. A., Kellis, M., & Tsai, L. (2019a). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature, 570(7761), 332–337. https://doi.org/10.1038/s41586-019-1195-2

Mathys, H., Dávila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., Menon, M., He, L., Abdurrob, F., Jiang, X., Martorell, A. J., Ransohoff, R. M., Hafler, B. P., Bennett, D. A., Kellis, M., & Tsai, L. (2019b). Author correction: Single-cell transcriptomic analysis of Alzheimer’s disease. Nature, 571(7763), E1. https://doi.org/10.1038/s41586-019-1329-6

Matsuyama, H., Shindo, A., Shimada, T., Yata, K., Wakita, H., Takahashi, R., & Tomimoto, H. (2020). Chronic cerebral hypoperfusion activates AIM2 and NLRP3 inflammasome. Brain Research, 1736, 146779. https://doi.org/10.1016/j.brainres.2020.146779

Nath, D., Khanam, N., & Ghosh, A. (2020). Role of phytocompounds en route blood-brain barrier in cerebral ischemia. European Journal of Medicinal Plants, 31(20), 104–115. https://doi.org/10.9734/ejmp/2020/v31i2030370

Pappas, B. A., De La Torre, J. C., Davidson, C., Keyes, M. T., & Fortin, T. (1996). Chronic reduction of cerebral blood flow in the adult rat: late-emerging CA1 cell loss and memory dysfunction. Brain Research, 708(1–2), 50–58. https://doi.org/10.1016/0006-8993(95)01267-2

Park, J., Hong, J. H., Lee, S., Ji, H. D., Jung, J., Yoon, K., Lee, J., Won, K. S., Song, B. S., & Kim, H. W. (2019). The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Scientific Reports, 9(1), 14102. https://doi.org/10.1038/s41598-019-50681-4

Poh, L., Sim, W. L., Jo, D., Dinh, Q. N., Drummond, G. R., Sobey, C. G., Chen, C., Lai, M. K., Fann, D. Y., & Arumugam, T. V. (2022). The role of inflammasomes in vascular cognitive impairment. Molecular Neurodegeneration, 17(1), 1–28. https://doi.org/10.1186/s13024-021-00506-8

Rajeev, V., Fann, D. Y., Dinh, Q. N., Kim, H. A., De Silva, T. M., Lai, M. K., Chen, C., Drummond, G. R., Sobey, C. G., & Arumugam, T. V. (2022). Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics, 12(4), 1639–1658. https://doi.org/10.7150/thno.68304

Roy, J., Wong, K. Y., Aquili, L., Uddin, M. S., Heng, B. C., Tipoe, G. L., Fung, M. L., & Lim, L. W. (2022). Role of melatonin in Alzheimer’s disease: From preclinical studies to novel melatonin-based therapies. Frontiers in Neuroendocrinology, 65, 100986. https://doi.org/10.1016/j.yfrne.2022.100986

Roy, S., Ansari, M. A., Choudhary, K., & Singh, S. (2023). NLRP3 inflammasome in depression: A review. International Immunopharmacology, 117, 109916. https://doi.org/10.1016/j.intimp.2023.109916

Scheffer, S., Hermkens, D., Van Der Weerd, L., De Vries, H. E., & Daemen, M. J. (2021). Vascular hypothesis of Alzheimer disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4), 1265–1283. https://doi.org/10.1161/atvbaha.120.311911

Shang, J., Yamashita, T., Zhai, Y., Nakano, Y., Morihara, R., Fukui, Y., Hishikawa, N., Ohta, Y., & Abe, K. (2016). Strong impact of chronic cerebral hypoperfusion on neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling in Alzheimer’s disease model mouse. Journal of Alzheimer’s Disease, 52(1), 113–126. https://doi.org/10.3233/jad-151126

Shang, J., Yamashita, T., Zhai, Y., Nakano, Y., Morihara, R., Li, X., Tian, F., Liu, X., Huang, Y., Shi, X., Hishikawa, N., & Ohta, Y. (2019). Acceleration of NLRP3 inflammasome by chronic cerebral hypoperfusion in Alzheimer’s disease model mouse. Neuroscience Research, 143, 61–70. https://doi.org/10.1016/j.neures.2018.06.002

Simats, A., & Liesz, A. (2022). Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Molecular Medicine, 14(9), e16269. https://doi.org/10.15252/emmm.202216269

Španić, E., Horvat, L., Ilić, K., Hof, P. R., & Šimić, G. (2022). NLRP1 inflammasome activation in the hippocampal formation in Alzheimer’s disease: correlation with neuropathological changes and unbiasedly estimated neuronal loss. Cells, 11(14), 2223. https://doi.org/10.3390/cells11142223

Su, S., Wu, Y., Lin, Q., & Hai, J. (2017). Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology, 390(12), 1189–1200. https://doi.org/10.1007/s00210-017-1417-9

Su, S., Wu, Y., Wei, D., & Hai, J. (2018). Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death and Disease, 9(7), 733. https://doi.org/10.1038/s41419-018-0755-y

Tiang, N., Ahad, M. A., Murugaiyah, V., & Hassan, Z. (2020). Xanthone-enriched fraction of Garcinia mangostana and α-mangostin improve the spatial learning and memory of chronic cerebral hypoperfusion rats. Journal of Pharmacy and Pharmacology, 72(11), 1629–1644. https://doi.org/10.1111/jphp.13345

Van Zeller, M., Dias, D. M., Sebastião, A. M., & Valente, C. A. (2021). NLRP3 Inflammasome: A starring role in Amyloid-Β- and TAU-Driven pathological events in Alzheimer’s disease. Journal of Alzheimer’s Disease, 83(3), 939–961. https://doi.org/10.3233/jad-210268

Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116

Wang, D., Lin, Q., Su, S., Liu, K., Wu, Y., & Hai, J. (2017). URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience, 344, 293–304. https://doi.org/10.1016/j.neuroscience.2016.12.034

Wang, D., Yin, H., Kang, K., Lin, Q., Su, S., & Hai, J. (2018). The potential protective effects of cannabinoid receptor agonist WIN55,212-2 on cognitive dysfunction is associated with the suppression of autophagy and inflammation in an experimental model of vascular dementia. Psychiatry Research, 267, 281–288. https://doi.org/10.1016/j.psychres.2018.06.012

Wang, D., Yin, H., Lin, Q., Fang, S., Shen, J., Wu, Y., Su, S., & Hai, J. (2019). Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392(10), 1277–1284. https://doi.org/10.1007/s00210-019-01672-9

Wang, X., Xing, A., Xu, C., Cai, Q., Hong, L., & Liang, L. (2010). Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-Β oligomerization in rats. Journal of Alzheimer’s Disease, 21(3), 813–822. https://doi.org/10.3233/jad-2010-100216

Wu, A., Zhou, X., Qiao, G., Yu, L., Tang, Y., Lu, Y., Qiu, W., Pan, R., Yu, C., Law, B. Y., Qin, D., & Wu, J. (2021). Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Research Reviews, 65, 101202. https://doi.org/10.1016/j.arr.2020.101202

Xu, L., Qu, C., Qu, C., Shen, J., Song, H., Li, Y., Liang, T., Zheng, J., & Zhang, J. (2020). Improvement of autophagy dysfunction as a potential mechanism for environmental enrichment to protect blood-brain barrier in rats with vascular cognitive impairment. Neuroscience Letters, 739, 135437. https://doi.org/10.1016/j.neulet.2020.135437

Xu, Y., Yang, Y., Chen, X., Jiang, D., Zhang, F., Guo, Y., Hu, B., Xu, G., Peng, S., Wu, L., & Hu, J. (2023). NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Translational Neurodegeneration, 12(1), 49. https://doi.org/10.1186/s40035-023-00381-x

Yu, W., Li, Y., Hu, J., Wu, J., & Huang, Y. (2022). A study on the pathogenesis of vascular cognitive impairment and dementia: The Chronic Cerebral Hypoperfusion hypothesis. Journal of Clinical Medicine, 11(16), 4742. https://doi.org/10.3390/jcm11164742

Zhang, J., Sun, P., Zhou, C., Zhang, X., Ma, F., Yang, X., Hamblin, M., & Yin, K. (2020). Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neuroscience & Therapeutics, 26(12), 1207–1218. https://doi.org/10.1111/cns.13472

Zhao, M., Zhang, B., Deng, L., & Zhao, L. (2023). Acrylamide induces neurotoxicity in SH-SY5Y cells via NLRP3-mediated pyroptosis. Molecular Neurobiology, 60(2), 596–609. https://doi.org/10.1007/s12035-022-03098-6

Zhao, S., Li, X., Wang, J., & Wang, H. (2021). The role of the effects of autophagy on NLRP3 inflammasome in inflammatory nervous system diseases. Frontiers in Cell and Developmental Biology, 9, 657478. https://doi.org/10.3389/fcell.2021.657478

Zhao, Y., Gu, J., Dai, C., Liu, Q., Iqbal, K., Liu, F., & Chen, G. (2014). Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Frontiers in Aging Neuroscience, 6, 10. https://doi.org/10.3389/fnagi.2014.00010

Downloads

Published

2024-05-19

How to Cite

Abedi, Z., Basri, H., Hassan, Z., Najwa Inche Mat, L., Khaza’ai, H. and Binti Mohd Ali, R. (2024) “The chronic cerebral hypoperfusion model induces proinflammatory cascades in Alzheimer’s disease”, Neuroscience Research Notes, 7(2), pp. 315.1–315.13. doi: 10.31117/neuroscirn.v7i2.315.