Cholinergic modulation of hippocampal long-term potentiation in chronic cerebral hypoperfused rats

  • Nor Fasihah Azam Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
  • Ryan Andrew Stanyard School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom.
  • Noorul Hamizah Mat Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
Keywords: vascular dementia, long-term potentiation, tacrine, oxotremorine, carbachol

Abstract

Vascular dementia (VaD) is one of the most common types of dementia in Alzheimer’s disease (AD). Two-vessel occlusion (2VO), also known as permanent bilateral occlusion of the common carotid arteries, induces chronic cerebral hypoperfusion (CCH) in rats, resulting in neuronal loss and inflammation (particularly in the cortex and hippocampus).  The 2VO rat model has been widely used to represent VaD conditions similar to those seen in humans. Synaptic plasticity or long-term potentiation (LTP) is one of the most important neurochemical foundations in learning and memory, deficits of which occur as a result of VaD. The aim of this study is to evaluate the role of cholinergic transmission in LTP impairment of CCH rat model. There is a significant impairment of LTP following the induction of 2VO surgery (p < .05). Treatment with oxotremorine and tacrine cause significant enhancement of LTP and potentiation levels (p < .05). There are also significant effects of paired-pulse facilitations when treated with cholinergic agonists and baseline synaptic transmission with increasing stimulation intensity (p < .0001). AChE activity was only found to increase significantly in the hippocampal region (p < .05). The role of cholinergic neurotransmission has been clearly demonstrated in LTP impairment of the CCH rat model. Augmentation of synaptic transmission was clearly observed in this model via changes of basal synaptic transmission and neurotransmitter release presynaptically.

References

Almaguer-Melian W, Rojas-Reyes Y, Alvare A, Rosillo JC, Frey JU, Bergado J A. Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiol Learn Mem.2005;83(1):72-78. https://doi.org/10.1016/j.nlm.2004.08.002

Amenta F, Di Tullio MA, Tomassoni D. The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens. 2002;24(7-8):697-713. https://www.ncbi.nlm.nih.gov/pubmed/12450245

Bartsch T, Wulff P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience. 2015;309:1-16. https://doi.org/10.1016/j.neuroscience.2015.07.084

Bertrand N, Beley A. Effect of oxotremorine, physostigmine, and scopolamine on brain acetylcholine synthesis: A study using HPLC. Neurochem Res. 1990;15(11):1097-1100. https://doi.org/10.1007/BF01101710

Bliss T V, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31-39. https://doi.org/10.1038/361031a0

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Castaño Guerrero Y, González Fraguela ME, Fernández Verdecia I, Horruitiner Gutiérrez I, Piedras Carpio S. Changes in oxidative metabolism and memory and learning in a cerebral hypoperfusion model in rats. Neurologia. 2013;28(1):1-8. https://doi.org/10.1016/j.nrleng.2012.01.001

Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Müller CP, et al. Time course of motor and cognitive functions after chronic cerebral ischemia in rats. Behav Brain Res. 2014;275:252-258. https://doi.org/10.1016/j.bbr.2014.09.014

Diez-Ariza M, Redondo C, García-Alloza M, Lasheras B, Del Río J, Ramírez MJ. Flumazenil and tacrine increase the effectiveness of ondansetron on scopolamine-induced impairment of spatial learning in rats. Psychopharmacology (Berl). 2003;169(1):35-41. https://doi.org/10.1007/s00213-003-1467-1

Doralp S, Leung LS. Cholinergic modulation of hippocampal CA1 basal-dendritic long-term potentiation. Neurobiol Learn Mem. 2008;90(2):382-388. https://doi.org/10.1016/j.nlm.2008.05.013

Dringenberg HC, Hamze B, Wilson A, Speechley W, Kuo M-C. Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cereb Cortex. 2007;17(4):839-848. https://doi.org/10.1093/cercor/bhk038

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Farkas E, Institóris A, Domoki F, Mihály A, Luiten PGM, Bari F. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res. 2004;1008(2):252-260. https://doi.org/10.1016/j.brainres.2004.02.037

Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007;54(1):162-180. https://doi.org/10.1016/j.brainresrev.2007.01.003

Gottfries CG, Blennow K, Karlsson I, Wallin A. The Neurochemistry of Vascular Dementia. Dementia. 1994;5(3-4):163-167. http://www.ncbi.nlm.nih.gov/pubmed/8087172

Gupta S, Sharma B. Pharmacological modulation of I1-imidazoline and a2-adrenoceptors in sub acute brain ischemia induced vascular dementia. Eur J Pharmacol . 2014;723:80-90. http://dx.doi.org/10.1016/j.ejphar.2013.12.003

Hager AM, Gagolewicz PJ, Rodier S, Kuo MC, Dumont TC, Dringenberg HC. Metaplastic up-regulation of LTP in the rat visual cortex by monocular visual training: Requirement of task mastery, hemispheric specificity, and NMDA-GluN2B involvement. Neuroscience. 2015;293:171-186. http://dx.doi.org/10.1016/j.neuroscience.2015.02.027

Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16(6):710-715. https://dx.doi.org/10.1016%2Fj.conb.2006.09.002

Hogsden JL, Rosen LG, Dringenberg HC. Pharmacological and deprivation-induced reinstatement of juvenile-like long-term potentiation in the primary auditory cortex of adult rats. Neuroscience. 2011;186:208-219. https://doi.org/10.1016/j.neuroscience.2011.04.002

Institoris A, Farkas E, Berczi S, Sule Z, Bari F. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol. 2007;574(1):29-38. https://doi.org/10.1016/j.ejphar.2007.07.019

Kitamura A, Fujita Y, Oishi N, Kalaria RN, Washida K, Maki T, et al. Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol Aging. 2012;33(5):1012.e25-1012.e35. https://doi.org/10.1016/j.neurobiolaging.2011.10.033

Knopman DS. Cerebrovascular disease and dementia. Br J Radiol. 2007;80(2):S121-127. https://doi.org/10.1259/bjr/75681080

Kocsis K, Knapp L, Gellért L, Oláh G, Kis Z, Takakuwa H, et al. Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia. Neuroscience. 2014;269:265-272. https://doi.org/10.1016/j.neuroscience.2014.03.055

Kohler I, Meier R, Busato A, Neiger-Aeschbacher G, Schatzmann U. Is carbon dioxide (CO2) a useful short acting anaesthetic for small laboratory animals? Lab Anim. 1999;33(2):155-161. https://doi.org/10.1258/002367799780578390

Kruger NJ. The bradford method for protein quantitation. In: Walker J.M. (eds) Basic Protein and Peptide Protocols. Methods in Molecular Biology™. Humana Press. 1994;32. https://doi.org/10.1385/0-89603-268-X:9

Kwon KJ, Kim MK, Lee EJ, Kim JN, Choi B-R, Kim SY, et al. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J Neurol Sci. 2014;347(1-2):66-77. https://doi.org/10.1016/j.jns.2014.09.021

Larkman AU, Jack JJ. Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol. 1995;5(3):324-334. https://doi.org/10.1016/0959-4388(95)80045-X

Larson J, Munkácsy E. Theta-burst LTP. Brain Res. 2015;1621:38-50. https://doi.org/10.1016/j.brainres.2014.10.034

Li H, Wang J, Wang P, Rao Y, Chen L. Resveratrol Reverses the Synaptic Plasticity Deficits in a Chronic Cerebral Hypoperfusion Rat Model. J Stroke Cerebrovasc Dis. 2015;25(1):122-128. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.004

Li Z, Zhou R, Cui S, Xie G, Cai W, Sokabe M, et al. Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor. Neuropharmacology. 2006;51(5):958-966. https://doi.org/10.1016/j.neuropharm.2006.06.007

Lin Q, Hai J, Yao L-Y, Lu Y. Neuroprotective effects of NSTyr on cognitive function and neuronal plasticity in rats of chronic cerebral hypoperfusion. Brain Res. 2010;1325:183-190. https://doi.org/10.1016/j.brainres.2010.02.037

Lisman J, Raghavachari S. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res. 2014;1621:51-61. https://doi.org/10.1016/j.brainres.2014.12.010

Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89(3):312-323. https://doi.org/10.1016/j.nlm.2007.08.018

Luo P, Lu Y, Li C, Zhou M, Chen C, Lu Q, et al. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region. Neurobiol Learn Mem. 2015;123:72-83. https://doi.org/10.1016/j.nlm.2015.05.005

Ma H, Mochida S. A cholinergic model synapse to elucidate protein function at presynaptic terminals. Neurosci Res. 2007; 57(4):491-498. https://doi.org/10.1016/j.neures.2006.12.015

Maroun M, Richter-Levin G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci. 2003;23(11):4406-4409. https://doi.org/10.1523/JNEUROSCI.23-11-04406.2003

Mohr F, Zimmermann M, Klein J. Mice heterozygous for AChE are more sensitive to AChE inhibitors but do not respond to BuChE inhibition. Neuropharmacology. 2013;67:37-45. https://doi.org/10.1016/j.neuropharm.2012.11.001

Murakami Y, Ikenoya M, Matsumoto K, Li H, Watanabe H. Ameliorative effect of tacrine on spatial memory deficit in chronic two-vessel occluded rats is reversible and mediated by muscarinic M1 receptor stimulation. Behav Brain Res. 2000;109(1):83-90. https://doi.org/10.1016/S0166-4328(99)00162-X

Nagy D, Kocsis K, Fuzik J, Marosi M, Kis Z, Teichberg VI, et al. Kainate postconditioning restores LTP in ischemic hippocampal CA1: onset-dependent second pathophysiological stress. Neuropharmacology. 2011;61(5-6):1026-1032. https://doi.org/10.1016/j.neuropharm.2011.07.005

Natsume K, Kometani K. Desynchronization of carbachol-induced theta-like activities by alpha-adrenergic agents in guinea pig hippocampal slices. Neurosci Res. 1999;33(3):179-186. https://doi.org/10.1016/S0168-0102(99)00007-3

Neves G, Cooke SF, Bliss T V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 2008;9(1):65-75. https://doi.org/10.1038/nrn3396

Ni JW, Matsumoto K, Li HB, Murakami Y, Watanabe H. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res. 1995;673(2):290-296. https://doi.org/10.1016/0006-8993(94)01436-L

Okuyama S, Shimada N, Kaji M, Morita M, Miyoshi K, Minami S, et al. Heptamethoxyflavone, a citrus flavonoid, enhances brain-derived neurotrophic factor production and neurogenesis in the hippocampus following cerebral global ischemia in mice. Neurosci Lett. 2012;528(2):190-195. https://doi.org/10.1016/j.neulet.2012.08.079

Otori T, Katsumata T, Muramatsu H, Kashiwagi F, Katayama Y, Terashi A. Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol. 2003;30(4):266-272. https://doi.org/10.1046/j.1440-1681.2003.03825.x

Ovsepian S V., Anwyl R, Rowan MJ. Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: In vivo study. Eur J Neurosci. 2004;20(5):1267-1275. https://doi.org/10.1111/j.1460-9568.2004.03582.x

Padilla S, Lassiter TL, Hunter D. Biochemical measurement of cholinesterase activity. Methods Mol Med. 1999; 22:237-245. https://doi.org/10.1385/0-89603-612-X:237

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 6th Edition. 2006.

Pereira FM, Ferreira EDF, de Oliveira RMW, Milani H. Time-course of neurodegeneration and memory impairment following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Behav Brain Res. 2012;229(2):340-348. https://doi.org/10.1016/j.bbr.2012.01.023

Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M. World Alzheimer Report 2015: The Global Impact of Dementia - An analysis of prevalence, incidence, cost and trends. 2015. https://www.alz.co.uk/research/worldalzheimerreport2015summary.pdf

Ray RS, Rai S, Katyal A. Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice. Nitric Oxide. 2014;43:62-73. https://doi.org/10.1016/j.niox.2014.08.009

Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends Neurosci. 2007;30(4):167-175. https://doi.org/10.1016/j.tins.2007.01.007

Roman GC, T E, A W, L. P, Chui HC. Subcortical ischaemic vascular dementia. The Lancet. 2002; 1(7): 426-436. https://www.ncbi.nlm.nih.gov/pubmed/12849365

Schulz PE, Cook EP, Johnston D. Using paired-pulse facilitation to probe the mechanisms for long-term potentiation (LTP). J Physiol Paris. 1995;89(1):3-9. https://doi.org/10.1016/0928-4257(96)80546-8

Shahraki A, Stone TW. Blockade of presynaptic adenosine A1 receptor responses by nitric oxide and superoxide in rat hippocampus. Eur J Neurosci. 2004;20(3):719-728. https://doi.org/10.1111/j.1460-9568.2004.03502.x

Shimoshige Y, Maeda T, Kaneko S, Akaike a, Satoh M. Involvement of M2 receptor in an enhancement of long-term potentiation by carbachol in Schaffer collateral-CA1 synapses of hippocampal slices. Neurosci Res. 1997;27(2):175-180. https://doi.org/10.1016/S0168-0102(96)01147-9

Sokolov M V, Kleschevnikov a M. Atropine suppresses associative LTP in the CA1 region of rat hippocampal slices. Brain Res. 1995;672(1-2):281-284. https://doi.org/10.1016/0006-8993(94)01376-S

Stäubli U, Xu FB. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci. 1995;15(3 Pt 2):2445-2452. https://doi.org/10.1523/JNEUROSCI.15-03-02445.1995

Tanaka K, Ogawa N, Asanuma M, Kondo Y, Nomura M. Relationship between cholinergic dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral hypoperfusion. Brain Res. 1996;729(1):55-65. https://doi.org/10.1016/0006-8993(96)00400-3

Terry A V, Callahan PM, Hall B, Webster SJ. Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol Biochem Behav. 2011;99(2):190-210. https://doi.org/10.1016/j.pbb.2011.02.002

Wang M, Chen W-H, Zhu D-M, She J-Q, Ruan D-Y. Effects of carbachol on lead-induced impairment of the long-term potentiation/depotentiation in rat dentate gyrus in vivo. Food Chem Toxicol. 2007;45:412-418. https://doi.org/10.1016/j.fct.2006.08.025

Wang Z, Fan J, Wang J, Li Y, Duan D, Du G, et al. Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats. Behav Brain Res. 2016;301:243-252. https://doi.org/10.1016/j.bbr.2015.12.047

Watanabe T, Takasaki K, Yamagata N, Fujiwara M, Iwasaki K. Facilitation of memory impairment and cholinergic disturbance in a mouse model of Alzheimer’s disease by mild ischemic burden. Neurosci Lett. 2013;536:74-79. https://doi.org/10.1016/j.neulet.2012.12.041

Xu B, Li XX, He GR, Hu JJ, Mu X, Tian S, et al. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur J Pharmacol . 2010;627(1-3):99-105. https://doi.org/10.1016/j.ejphar.2009.10.038

Xu J, Wang Y, Li N, Xu L, Yang H, Yang Z. L-3-n-butylphthalide improves cognitive deficits in rats with chronic cerebral ischemia. Neuropharmacology. 2012;62(7):2424-2429. https://doi.org/10.1016/j.neuropharm.2012.02.014

Xu X, Li Z, Yang Z, Zhang T. Decrease of synaptic plasticity associated with alteration of information flow in a rat model of vascular dementia. Neuroscience. 2012;206:136-143. https://doi.org/10.1016/j.neuroscience.2011.12.050

Zhu H, Zhang J, Sun H, Zhang L, Liu H, Zeng X, et al. An enriched environment reverses the synaptic plasticity deficit induced by chronic cerebral hypoperfusion. Neurosci Lett. 2011;502(2):71-75. https://doi.org/10.1016/j.neulet.2011.04.015

Published
2018-09-06
How to Cite
Azam, N. F., Stanyard, R., Mat, N. H. and Hassan, Z. (2018) “Cholinergic modulation of hippocampal long-term potentiation in chronic cerebral hypoperfused rats”, Neuroscience Research Notes, 1(1), pp. 42-57. doi: 10.31117/neuroscirn.v1i1.15.
Section
Research Notes