Inflammation in embryology: A review of neuroinflammation in spina bifida
DOI:
https://doi.org/10.31117/neuroscirn.v5i1.132Keywords:
neuroinflammation, spina bifida, neural tube defects, haemangioma, cytokineAbstract
The occurrence of neuroinflammation after the failure of neural tube closure, resulting in spina bifida aperta, is well established but whether or not neuroinflammation contributes to damage to the neuroepithelium prior to and during closure is not known. Neuroinflammation may occur at different time periods after perturbation to the developing spinal cord. Evidence suggests that early neuroinflammation is detrimental, whereas the later chronic phase of neuroinflammation may have useful roles. The role of neuroinflammation in neural tube defects is complex. It is important to make the distinction of whether neuroinflammation is important for neuroprotection or detrimental to the neural tissue. This may directly be influenced by the location, magnitude and duration of the insult, as well as the expression of neurotrophic or neurotoxic molecules. The current understanding remains that the chronic damage to the developing spinal cord is likely due to the chemical and mechanical damage of the exposed neural tissue owing to the aggressive intrauterine environment, described as the “two-hit mechanism”. Astrogliosis in the exposed spinal cord has been described in animal models of spina bifida after the failure of closure during embryonic life. Still, its association with neuroinflammatory processes is poorly understood. In this review, we will discuss the current understanding of neuroinflammation in neural tube defects, specifically spina bifida, and highlight inflammation-targeted strategies that may potentially be used to treat this pathophysiological condition.
References
Abdullah, N. L., Mohd-Zin, S. W., Ahmad-Annuar, A., & Abdul-Aziz, N. M. (2017). A novel occulta-type spina bifida mediated by murine double heterozygotes EphA2 and EphA4 receptor tyrosine kinases. Frontiers in Cell and Developmental Biology, 5, 106. https://doi.org/10.3389/fcell.2017.00105
Aghaeepour, N., Ganio, E. A., Mcilwain, D., Tsai, A. S., Tingle, M., Van Gassen, S., Gaudilliere, D. K., Baca, Q., McNeil, L., Okada, R., Ghaemi, M. S., Furman, D., Wong, R. J., Winn, V. D., Druzin, M. L., El-Sayed, Y. Y., Quaintance, C., Gibbs, R., Darmstadt, G. L., Shaw, G. M., … Gaudilliere, B. (2017). An immune clock of human pregnancy. Science Immunology, 2(15), eaan2946. https://doi.org/10.1126/sciimmunol.aan2946
Ander, S. E., Diamond, M. S., & Coyne, C. B. (2019). Immune responses at the maternal-fetal interface. Science Immunology, 4(31), eaat6114. https://doi.org/10.1126/sciimmunol.aat6114
Assadiasl, S., Mousavi, M. J., & Amirzargar, A. (2018). Antiapoptotic Molecule Survivin in Transplantation: Helpful or Harmful? Journal of Transplantation, 2018, 1–6. https://doi.org/10.1155/2018/6492034
Bamforth, S. D., Bragança, J., Eloranta, J. J., Murdoch, J. N., Marques, F. I. R., Kranc, K. R., Farza, H., Henderson, D. J., Hurst, H. C., & Bhattacharya, S. (2001). Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nature Genetics, 29(4), 469–474. https://doi.org/10.1038/ng768
Barbera, J.P., Rodriguez ,T.A., Greene, N.D., Weninger, W.J., Simeone, A., Copp, A.J., Beddington, R. S. P., & Dunwoodie, S. (2002). Folic acid prevents exencephaly in Cited2 deficient mice. Human Molecular Genetics, 11(3), 283-293.
https://doi.org/10.1093/hmg/11.3.283
Barberis, L., & Hirsch, E. (2008). Targeting phosphoinositide 3-kinase γ to fight inflammation and more. Thrombosis and Haemostasis, 99(2), 279–285. https://doi.org/10.1160/TH07-10-0632
Camerer, E., Barker, A., Duong, D. N., Ganesan, R., Kataoka, H., Cornelissen, I., Darragh, M. R., Hussain, A., Zheng, Y. W., Srinivasan, Y., Brown, C., Xu, S. M., Regard, J. B., Lin, C. Y., Craik, C. S., Kirchhofer, D., & Coughlin, S. R. (2010). local protease signaling contributes to neural tube closure in the mouse embryo. Developmental Cell, 18(1), 25–38. https://doi.org/10.1016/j.devcel.2009.11.014
Cecconi, F., Piacentini, M., & Fimia, G. M. (2008). The involvement of cell death and survival in neural tube defects: A distinct role for apoptosis and autophagy? Cell Death and Differentiation, 15(7),1170–1177. https://doi.org/10.1038/cdd.2008.64
Cerychova, R., & Pavlinkova, G. (2018). HIF-1, metabolism, and diabetes in the embryonic and adult heart. Frontiers in Endocrinology, 9, 460. https://doi.org/10.3389/fendo.2018.00460
Copp, Andrew J., and Nicholas DE Greene (2010) Genetics and development of neural tube defects. The Journal of Pathology, 220(2), 217-30.
Corna, G., Campana, L., Pignatti, E., Castiglioni, A., Tagliafico, E., Bosurgi, L., Campanella, A., Brunelli, S., Manfredi, A. A., Apostoli, P., Silvestri, L., Camaschella, C., & Rovere-Querini, P. (2010). Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica, 95(11),1814–1822.
https://doi.org/10.3324/haematol.2010.023879
Gibson, S. A., Yang, W., Yan, Z., Qin, H., & Benveniste, E. N. (2018). CK2 controls Th17 and regulatory T cell differentiation through inhibition of FoxO1. Journal of Immunology, 201(2), 383–392. https://doi.org/10.4049/jimmunol.1701592
Gray, R. S., Abitua, P. B., Wlodarczyk, B. J., Szabo-Rogers, H. L., Blanchard, O., Lee, I., Weiss, G. S., Liu, K. J., Marcotte, E. M., Wallingford, J. B., & Finnell, R. H. (2009). The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nature Cell Biology, 11(10), 1225–1232. https://doi.org/10.1038/ncb1966
Guleria, I., & Sayegh, M. H. (2007). Maternal acceptance of the fetus: true human tolerance. The Journal of Immunology, 178(6), 3345–3351. https://doi.org/10.4049/jimmunol.178.6.3345
Guo, D.-F., Beyer, A. M., Yang, B., Nishimura, D. Y., Sheffield, V. C., Rahmouni, K., & Rahmouni, K. (2011). Inactivation of Bardet-Biedl syndrome genes causes kidney defects. The American Journal of Physiology - Renal Physiology, 300, 574–580. https://doi.org/10.1152/ajprenal.00150.2010.-Bardet-Biedl
Hakem, R., Hakem, A., Duncan, G., Henderson, J., Woo, M., & Soengas, M. et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, 94(3), 339-352. https://doi.org/10.1016/s0092-8674(00)81477-4
Hoover, A. N., Wynkoop, A., Zeng, H., Jia, J., Niswander, L. A., & Liu, A. (2008). C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development, 135(24), 4049–4058. https://doi.org/10.1242/dev.029835
Houde, C. (2004). Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. Journal of Neuroscience, 24(44), 9977-9984. https://doi.org/10.1523/jneurosci.3356-04.2004
Janik, K., Manire, M. A., Smith, G. M., & Krynska, B. (2020). Spinal cord injury in myelomeningocele: prospects for therapy. Frontiers In Cellular Neuroscience, 14, 201 https://doi.org/10.3389/fncel.2020.00201
Jarad, G., & Miner, J. H. (2009). The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis, 47(1), 1–6. https://doi.org/10.1002/dvg.20447
Kalish, R. S., & Askenase, P. W. (1999). Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity: implications for allergies, asthma, and autoimmunity. The Journal of Allergy and Clinical Immunology, 103(2 Pt 1), 192–199. https://doi.org/10.1016/s0091-6749(99)70489-6
Kempuraj, D., Thangavel, R., Selvakumar, G. P., Zaheer, S., Ahmed, M. E., Raikwar, S. P., Zahoor, H., Saeed, D., Natteru, P. A., Iyer, S., & Zaheer, A. (2017). Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Frontiers In Cellular Neuroscience, 11, 216. https://doi.org/10.3389/fncel.2017.00216
Kikulska, A., Rausch, T., Krzywinska, E., Pawlak, M., Wilczynski, B., Benes, V., Rutkowski, P., & Wilanowski, T. (2018). Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. BMC Cancer, 18(1), 23. https://doi.org/10.1186/s12885-017-3943-8
Kim, G.-D., Das, R., Rao, X., Zhong, J., Deiuliis, J. A., Ramirez-Bergeron, D. L., Rajagopalan, S., & Mahabeleshwar, G. H. (2018). CITED2 restrains proinflammatory macrophage activation and response. Molecular and Cellular Biology, 38(5), e00452-17. https://doi.org/10.1128/mcb.00452-17
Latz, E., Xiao, T. S., & Stutz, A. (2013). Activation and regulation of the inflammasomes. Nature Reviews Immunology, 13(6), 397–411. https://doi.org/10.1038/nri3452
Lei, F., Song, J., Haque, R., Xiong, X., Fang, D., Wu, Y., Lens, S. M. A., Croft, M., & Song, J. (2013). Transgenic expression of survivin compensates for OX40-deficiency in driving Th2 development and allergic inflammation. European Journal of Immunology, 43(7), 1914–1924. https://doi.org/10.1002/eji.201243081
Lindner, J. R., Kahn, M. L., Coughlin, S. R., Sambrano, G. R., Schauble, E., Bernstein, D., Foy, D., Hafezi-Moghadam, A., & Ley, K. (2000). delayed onset of inflammation in protease-activated receptor-2-deficient mice. The Journal Of Immunology, 165(11), 6504-6510. https://doi.org/10.4049/jimmunol.165.11.6504
Lou, D. Y., Dominguez, I., Toselli, P., Landesman-Bollag, E., O’Brien, C., & Seldin, D. C. (2008). The alpha catalytic subunit of protein kinase ck2 is required for mouse embryonic development. Molecular and Cellular Biology, 28(1), 131–139. https://doi.org/10.1128/mcb.01119-07
McGeough, M. D., Wree, A., Inzaugarat, M. E., Haimovich, A., Johnson, C. D., Peña, C. A., Goldbach-Mansky, R., Broderick, L., Feldstein, A. E., & Hoffman, H. M. (2017). TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. Journal of Clinical Investigation, 127(12), 4488–4497. https://doi.org/10.1172/JCI90699
Meuli, M., Meuli-Simmen, C., Hutchins, G., Yingling, C., Hoffman, K., Harrison, M., & Adzick, N. (1995). In utero surgery rescues neurological function at birth in sheep with spina bifida. Nature Medicine, 1(4), 342-347. https://doi.org/10.1038/nm0495-342
Mohd-Zin, S. W., Marwan, A. I., Abou Chaar, M. K., Ahmad-Annuar, A., & Abdul-Aziz, N. M. (2017). Spina bifida: pathogenesis, mechanisms, and genes in mice and humans. Scientifica, 2017, 1-29. https://doi.org/10.1155/2017/5364827
Murakami, T., Ruengsinpinya, L., Nakamura, E., Takahata, Y., Hata, K., Okae, H., Taniguchi, S., Takahashi, M., & Nishimura, R. (2019). Cutting edge: G protein subunit β 1 negatively regulates NLRP3 inflammasome activation. The Journal of Immunology, 202(7), 1942–1947. https://doi.org/10.4049/jimmunol.1801388
Nancy, P., Tagliani, E., Tay, C. S., Asp, P., Levy, D. E., & Erlebacher, A. (2012). Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science, 336(6086), 1317–1321. https://doi.org/10.1126/science.1220030
Netto, J. M., Bastos, A. N., Figueiredo, A. A., & Pérez, L. M. (2009). Spinal dysraphism: a neurosurgical review for the urologist. Reviews in Urology, 11(2), 71–81.
Okae, H., & Iwakura, Y. (2010). Neural tube defects and impaired neural progenitor cell proliferation in Gβ1-deficient mice. Developmental Dynamics, 239(4), 1089–1101. https://doi.org/10.1002/dvdy.22256
Oria, M., Figueira, R. L., Scorletti, F., Sbragia, L., Owens, K., Li, Z., Pathak, B., Corona, M. U., Marotta, M., Encinas, J. L., & Peiro, J. L. (2018). CD200-CD200R imbalance correlates with microglia and pro-inflammatory activation in rat spinal cords exposed to amniotic fluid in retinoic acid-induced spina bifida. Scientific Reports, 8(1), 10638. https://doi.org/10.1038/s41598-018-28829-5
Park, J., Decker, J. T., Margul, D. J., Smith, D. R., Cummings, B. J., Anderson, A. J., & Shea, L. D. (2018). Local immunomodulation with anti-inflammatory cytokine-encoding lentivirus enhances functional recovery after spinal cord injury. Molecular Therapy, 26(7), 1756–1770. https://doi.org/10.1016/j.ymthe.2018.04.022
Patterson, V. L., Damrau, C., Paudyal, A., Reeve, B., Grimes, D. T., Stewart, M. E., Williams, D. J., Siggers, P., Greenfield, A., & Murdoch, J. N. (2009). Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: Identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Human Molecular Genetics, 18(10), 1719–1739. https://doi.org/10.1093/hmg/ddp075
Rackaityte, E., & Halkias, J. (2020). Mechanisms of fetal t cell tolerance and immune regulation. Frontiers In Immunology, 11, 588. https://doi.org/10.3389/fimmu.2020.00588
Régnier, C. H., Gis Masson, R., Rie Kedinger, V., Textoris, J., Stoll, I., Chenard, M.-P., Dierich, A. E., Tomasetto, C., & Rio, M.-C. (2002) Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proceedings of the National Academy of Sciences, 99(8), 5585-5590. https://doi.org/10.1073/pnas.052124799
Reemst, K., Noctor, S. C., Lucassen, P. J., & Hol, E. M. (2016). The indispensable roles of microglia and astrocytes during brain development. Frontiers In Human Neuroscience, 10, 566. https://doi.org/10.3389/fnhum.2016.00566
Ruland, J., Duncan, G.S., Elia, A., del Barco Barrantes, I., Nguyen, L., Plyte, S., Millar, D.G., Bouchard, D., Wakeham, A., Ohashi, P.S., Mak, T.W. (2001). Bcl10 is a positive regulator of antigen receptor–induced activation of NF-kappa B and neural tube closure. Cell, 104(1), 33-42. https://doi.org/10.1016/s0092-8674(01)00189-1
Ross, A. J., May-Simera, H., Eichers, E. R., Kai, M., Hill, J., Jagger, D. J., Leitch, C. C., Chapple, J. P., Munro, P. M., Fisher, S., Tan, P. L., Phillips, H. M., Leroux, M. R., Henderson, D. J., Murdoch, J. N., Copp, A. J., Eliot, M. M., Lupski, J. R., Kemp, D. T., … Beales, P. L. (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genetics, 37(10), 1135–1140. https://doi.org/10.1038/ng1644
Rudloff, I., Ung, H. K., Dowling, J. K., Mansell, A., D’Andrea, L., Ellisdon, A. M., Whisstock, J. C., Berger, P. J., Nold-Petry, C. A., & Nold, M. F. (2020). Parsing the IL-37-mediated suppression of inflammasome function. Cells, 9(1), 178. https://doi.org/10.3390/cells9010178
Sánchez-Fernández, A., Zandee, S., Amo-Aparicio, J., Charabati, M., Prat, A., Garlanda, C., Eisenmesser, E. Z., Dinarello, C. A., & López-Vales, R. (2020). IL-37 exerts therapeutic effects in experimental autoimmune encephalomyelitis through the receptor complex IL-1R5/IL-1R8. Theranostics, 11(1), 1–13. https://doi.org/10.7150/THNO.47435
Schumacher, W. E., Drolet, B. A., Maheshwari, M., Horii, K. A., Nopper, A. J., Newell, B. D., Metry, D. W., Garzon, M. C., Morel, K. D., Chamlin, S. L., Mancini, A. J., Frieden, I. J., & Johnson, C. M. (2012). Spinal dysraphism associated with the cutaneous lumbosacral infantile hemangioma: UA neuroradiological review. Pediatric Radiology, 42(3), 315–320. https://doi.org/10.1007/s00247-011-2262-5
Stokes, B. A., Sabatino, J. A., & Zohn, I. E. (2017). High levels of iron supplementation prevents neural tube defects in the Fpn1ffe mouse model. Birth Defects Research, 109(2), 81–91. https://doi.org/10.1002/bdra.23542
Stuebner, S., Faus-Kessler, T., Fischer, T., Wurst, W., & Prakash, N. (2010). Fzd3 and Fzd6 deficiency results in a severe midbrain morphogenesis defect. Developmental Dynamics, 239(1), 246–260. https://doi.org/10.1002/dvdy.22127
Sudiwala, S., Palmer, A., Massa, V., Burns, A. J., Dunlevy, L. P. E., de Castro, S. C. P. S. C. P., Savery, D., Leung, K. Y., Copp, A. J., & Greene, N. D. E. (2019). Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid. Disease Models & Mechanisms, 12(11), dmm042234. https://doi.org/10.1242/dmm.042234
Tan, S. T., Wallis, R. A., He, Y., & Davis, P. F. (2004). Mast cells and hemangioma. Plastic And Reconstructive Surgery, 113(3), 999-1011. https://doi.org/10.1097/01.prs.0000105683.10752.a6
Tarui, T., Kim, A., Flake, A., McClain, L., Stratigis, J. D., Fried, I., Newman, R., Slonim, D. K., & Bianchi, D. W. (2017). Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele. American Journal of Obstetrics and Gynecology, 217(5), 587.e1-587.e10. https://doi.org/10.1016/j.ajog.2017.07.022
Tersigni, C., Meli, F., Neri, C., Iacoangeli, A., Franco, R., Lanzone, A., Scambia, G., & di Simone, N. (2020). Role of human leukocyte antigens at the feto-maternal interface in normal and pathological pregnancy: an update. International Journal Of Molecular Sciences, 21(13), 4756. https://doi.org/10.3390/ijms21134756
Tong, H., Miyake, Y., Mi-ichi, F., Iwakura, Y., Hara, H., & Yoshida, H. (2018). Apaf1 plays a negative regulatory role in T cell responses by suppressing activation of antigen-stimulated T cells. PLOS ONE, 13(3), e0195119. https://doi.org/10.1371/journal.pone.0195119
van den Bos, E., Ambrosy, B., Horsthemke, M., Walbaum, S., Bachg, A. C., Wettschureck, N., Innamorati, G., Wilkie, T. M., & Hanley, P. J. (2020). Knockout mouse models reveal the contributions of G protein subunits to complement C5a receptor–mediated chemotaxis. Journal of Biological Chemistry, 295(22), 7726–7742. https://doi.org/10.1074/jbc.RA119.011984
Wan, C., Liu, X., Bai, B., Cao, H., Li, H., & Zhang, Q. (2018). Regulation of the expression of tumor necrosis factor-related genes by abnormal histone H3K27 acetylation: Implications for neural tube defects. Molecular Medicine Reports, 17(6), 8031–8038. https://doi.org/10.3892/mmr.2018.8900
Wang, C. Y., Canali, S., Bayer, A., Dev, S., Agarwal, A., & Babitt, J. L. (2019). Iron, erythropoietin, and inflammation regulate hepcidin in Bmp2-deficient mice, but serum iron fails to induce hepcidin in Bmp6-deficient mice. American Journal of Hematology, 94(2), 240–248. https://doi.org/10.1002/ajh.25366
Wang, Y., Lian, L., Golden, J. A., Morrisey, E. E., Abrams, C. S., & Majerus, P. W. (2007). PIP5KIγ is required for cardiovascular and neuronal development. Proceedings of the National Academy of Sciences, 104(28), 11748-11753. https://doi.org/10.1073/pnas.0700019104
Ward, D. M., & Kaplan, J. (2012). Ferroportin-mediated iron transport: Expression and regulation. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1426-1433. https://doi.org/10.1016/j.bbamcr.2012.03.004
Wilde, J., Petersen, J., & Niswander, L. (2014). Genetic, epigenetic, and environmental contributions to neural tube closure. Annual Review Of Genetics, 48(1), 583-611. https://doi.org/10.1146/annurev-genet-120213-092208
Yao, L., Wang, S., Westholm, J. O., Dai, Q., Matsuda, R., Hosono, C., Bray, S., Lai, E. C., & Samakovlis, C. (2017). Genome-wide identification of Grainy head targets in Drosophila reveals regulatory interactions with the POU domain transcription factor Vvl. Development (Cambridge, England), 144(17), 3145–3155. https://doi.org/10.1242/dev.143297
Yockey, L. J., & Iwasaki, A. (2018). Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity, 49(3), 397–412. https://doi.org/10.1016/j.immuni.2018.07.017
Zeng, H., Hoover, A. N., & Liu, A. (2010). PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Developmental Biology, 339(2), 418–428. https://doi.org/10.1016/j.ydbio.2010.01.003
Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T.J., Perry, W..L, Lee, J.J., Tilghman, S.M., Gumbiner, B.M., Costantini, F. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell, 90(1), 181-192. https://doi.org/10.1016/s0092-8674(00)80324-4
Zhang, L., Zhang, J., & Gao, P. (2017). The potential of interleukin-37 as an effective therapeutic agent in asthma. Respiratory Research, 18(1), 192. https://doi.org/10.1186/s12931-017-0675-x
Zhang, Y., Luo, H., Lv, X., Liu, J., Chen, X., Li, Y., Liu, A., & Jiang, Y. (2019). Axin-1 binds to Caveolin-1 to regulate the LPS-induced inflammatory response in AT-I cells. Biochemical and Biophysical Research Communications, 513(1), 261–268. https://doi.org/10.1016/j.bbrc.2019.03.153
Zhang, Z., Zhang, F., An, P., Guo, X., Shen, Y., Tao, Y., Wu, Q., Zhang, Y., Yu, Y., Ning, B., Nie, G., Knutson, M.D., Anderson, G.J. & Wang, F. (2011). Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood, 118(7), 1912-1922. https://doi.org/10.1182/blood-2011-01-330324
Zhao, M., Li, Y., Guo, C., Wang, L., Chu, H., Zhu, F., Li, Y., Wang, X., Wang, Q., Zhao, W., Shi, Y., Chen, W., & Zhang, L. (2018). IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner article. Cell Death and Disease, 9(6), 582. https://doi.org/10.1038/s41419-018-0664-0
Zhao, T., Gan, Q., Stokes, A., Lassiter, R. N. T., Wang, Y., Chan, J., Han, J. X., Pleasure, D. E., Epstein, J. A., & Zhou, C. J. (2014). β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development, 141(1), 148–157. https://doi.org/10.1242/dev.101550
Zhou, H., Wertz, I., O'Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W. & Dixir, V.M. (2003). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature, 427(6970), 167-171. https://doi.org/10.1038/nature02273
Zhu, S., Nagashima, M., Khan, M. A. S., Yasuhara, S., Kaneki, M., & Martyn, J. A. J. (2013). Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation. Muscle and Nerve, 47(5), 711–721. https://doi.org/10.1002/mus.23642
Zwerts, F., Lupu, F., de Vriese, A., Pollefeyt, S., Moons, L., Altura, R. A., Jiang, Y., Maxwell, P. H., Hill, P., Oh, H., Rieker, C., Collen, D., Conway, S. J., & Conway, E. M. (2007). Lack of endothelial cell survivin causes embryonic defects in angiogenesis, cardiogenesis, and neural tube closure. Blood, 109(11), 4742–4752. https://doi.org/10.1182/blood-2006-06-028068
Downloads
Published
Versions
- 2022-04-01 (2)
- 2022-03-27 (1)
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Singh Nivrenjeet, Siti Waheeda Mohd-Zin, Singh Nisheljeet, Abu Bakar Azizi, Kamalanathan Palaniandy, Mohd Firdaus-Raih, Mohd Hisam Muhamad Ariffin, Nicholas Daniel Edward Greene, Noraishah Mydin Abdul-Aziz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.