Development of a cognitive-based smartphone application for Malaysian Parkinson's disease patients: Exploring the possibility?

Authors

  • Wael Mohamed (1) Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia. (2) Clinical pharmacology department, Menoufia Medical School, Menoufia University, Egypt.
  • Shahedah Koya Kutty Internal Medicine Department, Kulliyyah of Medicine, SASMEC, Pahang, Malaysia
  • Akram Khedher Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Indranath Chatterjee Department of Computer Engineering, Tongmyong University, Busan, South Korea

DOI:

https://doi.org/10.31117/neuroscirn.v5i1.126

Keywords:

telemedicine, non-motor symptoms, PD, dementia, Malay

Abstract

The COVID-19 pandemic has accelerated the digital health system. Healthcare organizations want to give medical treatment to individuals who live a great distance away. As a result, they are emphasizing the creation of bespoke telemedicine apps. The number of individuals using telemedicine apps is increasing significantly. Increasing technology gives patients healthcare resources. This has been made feasible via a new telemedicine system and by developing a telemedicine app. Patients can use several technologies to communicate with healthcare professionals. For comfort and privacy, you can employ live visual media. The creation of telemedicine apps is the most attractive and practical investment. With the growing availability and usage of technology in PD, the focus of these technologies is gradually turning toward the disease's vast spectrum of Non-Motor Symptoms (NMS). The nature of NMS makes them difficult to objectively measure, further development and building on experience gained in other conditions may still result in NMS capture that is feasible. Although it is impossible to offer recommendations for the use of digital technology outcomes for NMS in clinical practise based on currently available data, evidence for these devices is evolving, and such guidance may become accessible in the not-too-distant future. To our knowledge, this is the first telemedicine method of its sort to address cognition as one of the NMS in Malay PD patients. The project will be done on two consecutive phases (1 year each); Phase1 aims to develop the Dementia Coach Mobile App, and Phase2 aims to validation of this app by using PD patients sample from SASMEC. Therefore, we hypothesize that developing a friendly mobile app to assess dementia for PD patients is highly beneficial and could be used for diagnosis of NMS in PD patients.

References

Aghanavesi, S., Nyholm, D., Senek, M., Bergquist, F., & Memedi, M. (2017). A smartphone-based system to quantify dexterity in Parkinson's disease patients. Informatics in Medicine Unlocked, 9, 11-17. https://doi.org/10.1016/j.imu.2017.05.005

Aghanavesi, S., Memedi, M., Dougherty, M., Nyholm, D., & Westin, J. (2017). Verification of a method for measuring Parkinson’s disease related temporal irregularity in spiral drawings. Sensors, 17(10), 2341. https://doi.org/10.3390/s17102341

Antonini, A., Stoessl, A. J., Kleinman, L. S., Skalicky, A. M., Marshall, T. S., Sail, K. R., ... & Odin, P. L. A. (2018). Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson’s disease: a multi-country Delphi-panel approach. Current Medical Research and Opinion, 34(12), 2063-2073. https://doi.org/10.1080/03007995.2018.1502165

Athilingam, P., Visovsky, C., Elliott, A. F., & Rogal, P. J. (2015). Cognitive screening in persons with chronic diseases in primary care: Challenges and recommendations for practice. American Journal of Alzheimer's Disease & Other Dementias®, 30(6), 547-558. https://doi.org/10.1177/1533317515577127

Bhidayasiri, R., & Martinez-Martin, P. (2017). Clinical assessments in Parkinson's disease: scales and monitoring. International Review of Neurobiology, 132, 129-182. https://doi.org/10.1016/bs.irn.2017.01.001

Boulos, M. N. K., Wheeler, S., Tavares, C., & Jones, R. (2011). How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomedical Engineering Online, 10(1), 1-14. https://doi.org/10.1186/1475-925X-10-24

Chen, K. H., Lin, P. C., Yang, B. S., & Chen, Y. J. (2018). The difference in visuomotor feedback velocity control during spiral drawing between Parkinson’s disease and essential tremor. Neurological Sciences, 39(6), 1057-1063. https://doi.org/10.1007/s10072-018-3331-4

Clifford, G. D., & Clifton, D. (2012). Wireless technology in disease management and medicine. Annual Review of Medicine, 63, 479-492. https://doi.org/10.1146/annurev-med-051210-114650

Doherty, S. T., & Oh, P. (2012). A multi-sensor monitoring system of human physiology and daily activities. Telemedicine and e-Health, 18(3), 185-192. https://doi.org/10.1089/tmj.2011.0138

Dufau, S., Duñabeitia, J. A., Moret-Tatay, C., McGonigal, A., Peeters, D., Alario, F. X., ... & Grainger, J. (2011). Smart phone, smart science: how the use of smartphones can revolutionize research in cognitive science. PloS One, 6(9), e24974. https://doi.org/10.1371/journal.pone.0024974

Fortney, J. C., Burgess, J. F., Bosworth, H. B., Booth, B. M., & Kaboli, P. J. (2011). A re-conceptualization of access for 21st century healthcare. Journal of General Internal Medicine, 26(2), 639-647. https://doi.org/10.1007/s11606-011-1806-6

Gill, P. S., Kamath, A., & Gill, T. S. (2012). Distraction: an assessment of smartphone usage in health care work settings. Risk Management and Healthcare Policy, 5, 105. https://doi.org/10.2147/RMHP.S34813

Hindle, J. V. (2010). Ageing, neurodegeneration and Parkinson’s disease. Age and Ageing, 39(2), 156-161. https://doi.org/10.1093/ageing/afp223

Klasnja, P., & Pratt, W. (2012). Healthcare in the pocket: mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics, 45(1), 184-198. https://doi.org/10.1016/j.jbi.2011.08.017

Koch, S. (2006). Home telehealth—current state and future trends. International Journal of Medical Informatics, 75(8), 565-576. https://doi.org/10.1016/j.ijmedinf.2005.09.002

Kruizinga, M. D., Stuurman, F. E., Exadaktylos, V., Doll, R. J., Stephenson, D. T., Groeneveld, G. J., ... & Cohen, A. F. (2020). Development of novel, value-based, digital endpoints for clinical trials: a structured approach toward fit-for-purpose validation. Pharmacological Reviews, 72(4), 899-909. https://doi.org/10.1124/pr.120.000028

Levine, S. R., & Gorman, M. (1999). “Telestroke” the application of telemedicine for stroke. Stroke, 30(2), 464-469. https://doi.org/10.1161/01.str.30.2.464

Lin, P. C., Chen, K. H., Yang, B. S., & Chen, Y. J. (2018). A digital assessment system for evaluating kinetic tremor in essential tremor and Parkinson’s disease. BMC Neurology, 18(1), 1-8. https://doi.org/10.1186/s12883-018-1027-2

Lopez-de-Ipina, K., Solé-Casals, J., Faúndez-Zanuy, M., Calvo, P. M., Sesa, E., Roure, J., ... & Bergareche, A. (2018). Automatic analysis of Archimedes’ spiral for characterization of genetic essential tremor based on Shannon’s entropy and fractal dimension. Entropy, 20(7), 531. https://doi.org/10.3390/e20070531

Louis, E. D. (2009). Essential tremors: a family of neurodegenerative disorders?. Archives of Neurology, 66(10), 1202-1208. https://doi.org/10.1001/archneurol.2009.217

Ludlow, C. L., Connor, N. P., & Bassich, C. J. (1987). Speech timing in Parkinson's and Huntington's disease. Brain and Language, 32(2), 195-214. https://doi.org/10.1016/0093-934x(87)90124-6

Mack, J., & Marsh, L. (2017). Parkinson’s disease: cognitive impairment. Focus, 15(1), 42-54. https://doi.org/10.1176/appi.focus.20160043

Maglione, J. E., Liu, L., Neikrug, A. B., Poon, T., Natarajan, L., Calderon, J., ... & Ancoli-Israel, S. (2013). Actigraphy for the assessment of sleep measures in Parkinson's disease. Sleep, 36(8), 1209-1217.. https://doi.org/10.5665/sleep.2888

Marder, K., Zhao, H., Eberly, S., Tanner, C. M., Oakes, D., & Shoulson, I. (2009). Dietary intake in adults at risk for Huntington disease: analysis of PHAROS research participants. Neurology, 73(5), 385-392. https://doi.org/10.1212/WNL.0b013e3181b04aa2

Martin, C. K., Correa, J. B., Han, H., Allen, H. R., Rood, J. C., Champagne, C. M., ... & Bray, G. A. (2012). Validity of the Remote Food Photography Method (RFPM) for estimating energy and nutrient intake in near real‐time. Obesity, 20(4), 891-899. https://doi.org/10.1038/oby.2011.344

Mellone, S., Tacconi, C., Schwickert, L., Klenk, J., Becker, C., & Chiari, L. (2012). Smartphone-based solutions for fall detection and prevention: the FARSEEING approach. Zeitschrift für Gerontologie und Geriatrie, 45(8), 722-727. https://doi.org/10.1007/s00391-012-0404-5

Mellone, S., Tacconi, C., & Chiari, L. (2012). Validity of a Smartphone-based instrumented Timed Up and Go. Gait & Posture, 36(1), 163-165. https://doi.org/10.1016/j.gaitpost.2012.02.006

Miller, D. B., & O’Callaghan, J. P. (2015). Biomarkers of Parkinson’s disease: present and future. Metabolism, 64(3), S40-S46. https://doi.org/10.1016/j.metabol.2014.10.030

Olshansky, S. J., Goldman, D. P., Zheng, Y., & Rowe, J. W. (2009). Aging in America in the twenty‐first century: demographic forecasts from the MacArthur Foundation Research Network on an aging society. The Milbank Quarterly, 87(4), 842-862. https://doi.org/10.1111/j.1468-0009.2009.00581.x

Owens, A. P., Hinds, C., Manyakov, N. V., Stavropoulos, T. G., Lavelle, G., Gove, D., ... & Aarsland, D. (2020). Selecting remote measurement technologies to optimize assessment of function in early Alzheimer's disease: a case study. Frontiers in Psychiatry, 1163. https://doi.org/10.3389/fpsyt.2020.582207

Panayides, A., Pattichis, M. S., Pattichis, C. S., Schizas, C. N., Spanias, A., & Kyriacou, E. (2010). An overview of recent end-to-end wireless medical video telemedicine systems using 3G. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 1045-1048). IEEE. https://doi.org/10.1109/IEMBS.2010.5628076

Pereira, C. R., Pereira, D. R., Weber, S. A., Hook, C., De Albuquerque, V. H. C., & Papa, J. P. (2019). A survey on computer-assisted Parkinson's disease diagnosis. Artificial Intelligence in Medicine, 95, 48-63. https://doi.org/10.1016/j.artmed.2018.08.007

Rajan, R. (2012). The promise of wireless: an overview of a device-to-cloud mHealth solution. Biomedical Instrumentation & Technology, 46(2), 26. https://doi.org/10.2345/0899-8205-46.s2.26

Rosser, J. C., Gabriel, N., Herman, B. A., & Murayama, M. (2001). Telementoring and teleproctoring. World Journal of Surgery, 25(11), 1438-1448. https://doi.org/10.1007/s00268-001-0129-x

Rogante, M., Grigioni, M., Cordella, D., & Giacomozzi, C. (2010). Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation, 27(4), 287-304. https://doi.org/10.3233/NRE-2010-0612

San Luciano, M., Wang, C., Ortega, R. A., Yu, Q., Boschung, S., Soto-Valencia, J., ... & Saunders-Pullman, R. (2016). Digitized spiral drawing: A possible biomarker for early Parkinson’s disease. PloS One, 11(10), e0162799. https://doi.org/10.1371/journal.pone.0162799

Scharre, D. W., Chang, S. I., Murden, R. A., Lamb, J., Beversdorf, D. Q., Kataki, M., ... & Bornstein, R. A. (2010). Self-administered Gerocognitive Examination (SAGE): a brief cognitive assessment Instrument for mild cognitive impairment (MCI) and early dementia. Alzheimer Disease & Associated Disorders, 24(1), 64-71. https://doi.org/10.1097/WAD.0b013e3181b03277

Sisti, J. A., Christophe, B., Seville, A. R., Garton, A. L., Gupta, V. P., Bandin, A. J., ... & Pullman, S. L. (2017). Computerized spiral analysis using the iPad. Journal of Neuroscience Methods, 275, 50-54. https://doi.org/10.1016/j.jneumeth.2016.11.004

Solé-Casals, J., Anchustegui-Echearte, I., Marti-Puig, P., Calvo, P. M., Bergareche, A., Sánchez-Méndez, J. I., & Lopez-de-Ipina, K. (2019). Discrete cosine transform for the analysis of essential tremor. Frontiers in Physiology, 9, 1947. https://doi.org/10.3389/fphys.2018.01947

van Wamelen, D. J., Martinez‐Martin, P., Weintraub, D., Schrag, A., Antonini, A., Falup‐Pecurariu, C., ... & International Parkinson and Movement Disorder Society Parkinson's Disease Non‐Motor Study Group. (2021). The Non‐Motor Symptoms Scale in Parkinson’s disease: Validation and use. Acta Neurologica Scandinavica, 143(1), 3-12.. https://doi.org/10.1111/ane.13336

Worringham, C., Rojek, A., & Stewart, I. (2011). Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation. PloS One, 6(2), e14669.. https://doi.org/10.1371/journal.pone.0014669

Downloads

Published

2022-03-31

How to Cite

Mohamed, W., Kutty, S. K., Khedher, A., & Chatterjee, I. (2022). Development of a cognitive-based smartphone application for Malaysian Parkinson’s disease patients: Exploring the possibility?. Neuroscience Research Notes, 5(1), 126. https://doi.org/10.31117/neuroscirn.v5i1.126