The application of vagus nerve stimulation in individuals with misophonia

Authors

  • Abishek Umashankar Department of Audiology, All India Institute of Speech and Hearing Mysuru, Naimisham Campus, Road No.3 TK Layout, Manasagangotri, Mysuru Karnataka 570006.
  • Prashanth Prabhu Department of Audiology, All India Institute of Speech and Hearing Mysuru, Naimisham Campus, Road No.3 TK Layout, Manasagangotri, Mysuru Karnataka 570006.

DOI:

https://doi.org/10.31117/neuroscirn.v3i5.105

Keywords:

misophonia, vagus nerve stimulation, tinnitus, non-classical auditory pathway, limbic system

Abstract

Stimulating the Vagus nerve helps maintain the autonomic tone, indicating stabilising any hyperactivity in the nervous system. The vagus nerve stimulation is applied in individuals with seizures, depression, sepsis, pain, obesity, cardiovascular disease, lung disease, diabetes, stroke, and traumatic brain injury. Auditory neuroscience has been widely applied in individuals with tinnitus and has been demonstrated as a successful neuromodulation technique. Individuals with peripheral lesions of the hair cells induce a maladaptive change in the plasticity resulting in hyperactivity in the auditory and non-auditory structures. In order to reduce this hyperactivity, neuromodulation techniques such as; transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, neurofeedback, epidural and subdural cortical and deep brain stimulation. The vagus nerve stimulation is also one form of neuromodulation technique considered to reduce the symptoms of tinnitus. It is believed that the ramus Auricularis Nervi vagi, an afferent sensory branch of the vagus nerve, innervates the afferent sensory branch of the vagus nerve, the ramus auricularis nervi vagi also innervate the outer ear canal and parts of the auricle. This auricular branch of the vagus nerve also called Arnold's nerve, which gives a projection to the nucleus of the solitary tract. The vagus nerve stimulation in individuals with tinnitus works to activate the auricular branch of the vagus nerve to reduce its symptoms. A similar principle of vagus nerve stimulation can be tried upon in individuals with misophonia. Literatures states that individuals with misophonia have hyperactivity in their non-classical auditory pathway that can be suppressed with the help of vagus nerve stimulation. The article discusses the possible effects of vagus nerve stimulation in individuals with misophonia.

References

Asnis G. M. (2020). Pharmacological Treatments for Tinnitus. JAMA, 324(11), 1109. https://doi.org/10.1001/jama.2020.11851

Baguley D. M. (2002). Mechanisms of tinnitus. British Medical Bulletin, 63, 195–212. https://doi.org/10.1093/bmb/63.1.195

Baguley, D., McFerran, D., & Hall, D. (2013). Tinnitus. Lancet, 382(9904), 1600–1607. https://doi.org/10.1016/S0140-6736(13)60142-7

Ben-Menachem, E., Revesz, D., Simon, B. J., & Silberstein, S. (2015). Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. European Journal of Neurology, 22(9), 1260–1268. https://doi.org/10.1111/ene.12629

Bernstein, R. E., Angell, K. L., & Dehle, C. M. (2013). A brief course of cognitive behavioural therapy for the treatment of misophonia: a case example. The Cognitive Behaviour Therapist, 6, E10. https://doi.org/10.1017/S1754470X13000172

Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. Journal of Anatomy, 236(4), 588–611. https://doi.org/10.1111/joa.13122

Cavanna, A. E., & Seri, S. (2015). Misophonia: current perspectives. Neuropsychiatric Disease and Treatment, 11, 2117–2123. https://doi.org/10.2147/NDT.S81438

Cristancho, P., Cristancho, M. A., Baltuch, G. H., Thase, M. E., & O'Reardon, J. P. (2011). Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. The Journal of Clinical Psychiatry, 72(10), 1376–1382. https://doi.org/10.4088/JCP.09m05888blu

Edelstein, M., Brang, D., Rouw, R., & Ramachandran, V. S. (2013). Misophonia: physiological investigations and case descriptions. Frontiers in Human Neuroscience, 7, 296. https://doi.org/10.3389/fnhum.2013.00296

Eijsker, N., Schröder, A., Smit, D. J., van Wingen, G., & Denys, D. (2019). Neural Basis of Response Bias on the Stop Signal Task in Misophonia. Frontiers in Psychiatry, 10, 765.

Eijsker, N., Schröder, A., van Wingen, G., & Denys, D. (2018). T74. Response Bias on the Stop-Signal Task: An Endophenotype of Misophonia? Biological Psychiatry, 83(9), S157.

Frank, B., Roszyk, M., Hurley, L., Drejaj, L., & McKay, D. (2020). Inattention in misophonia: Difficulties achieving and maintaining alertness. Journal of Clinical and Experimental Neuropsychology, 42(1), 66–75. https://doi.org/10.1080/13803395.2019.1666801

Giorgi, R. S. (2015). Hyperactivity in amygdala and auditory cortex in Misophonia: Preliminary results of a functional magnetic resonance imaging study. Amsterdam Brain and Cognition Journal, 2, 221.

Haines, R. H., White, J., Meakin, G., Tan, W., Hepburn, T., Leighton, P., Theriou, C., Stockdale, D., Almey, C., Nicholson, R., Hall, D. A., & Sereda, M. (2020). Protocol for a multi-centre randomised controlled stand-alone feasibility trial to assess potential effectiveness and cost-effectiveness of digital hearing aids in patients with tinnitus and hearing loss (the HUSH trial). Pilot and Feasibility Studies, 6, 41. https://doi.org/10.1186/s40814-020-00582-5

Howland R. H. (2014). Vagus Nerve Stimulation. Current Behavioral Neuroscience Reports, 1(2), 64–73. https://doi.org/10.1007/s40473-014-0010-5

Jastreboff, P., & Jastreboff, M. (2014). Treatments for Decreased Sound Tolerance (Hyperacusis and Misophonia). Seminars in Hearing, 35, 105-120.

Johnson, R. L., & Wilson, C. G. (2018). A review of vagus nerve stimulation as a therapeutic intervention. Journal of Inflammation Research, 11, 203–213. https://doi.org/10.2147/JIR.S163248

Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., ... & Széles, J. C. (2019). Current directions in the auricular vagus nerve stimulation I–a physiological perspective. Frontiers in Neuroscience, 13, 854.

Kluckow, H., Telfer, J., & Abraham, S. (2014). Should we screen for misophonia in patients with eating disorders? A report of three cases. The International Journal of Eating Disorders, 47(5), 558–561. https://doi.org/10.1002/eat.22245

Knipper, M., van Dijk, P., Schulze, H., Mazurek, B., Krauss, P., Scheper, V., Warnecke, A., Schlee, W., Schwabe, K., Singer, W., Braun, C., Delano, P. H., Fallgatter, A. J., Ehlis, A. C., Searchfield, G. D., Munk, M., Baguley, D. M., & Rüttiger, L. (2020). The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. Journal of Neuroscience, 40(38), 7190–7202. https://doi.org/10.1523/JNEUROSCI.1314-19.2020

Kochilas, H. L., Cacace, A. T., Arnold, A., Seidman, M. D., & Tarver, W. B. (2020). Vagus nerve stimulation paired with tones for tinnitus suppression: Effects on voice and hearing. Laryngoscope Investigative Otolaryngology, 5(2), 286–296. https://doi.org/10.1002/lio2.364

Krauss, P., Schilling, A., Tziridis, K., & Schulze, H. (2019). Modelle der Tinnitusentstehung : Von der Cochlea zum Kortex [Models of tinnitus development : From cochlea to cortex]. HNO, 67(3), 172–177. https://doi.org/10.1007/s00106-019-0612-z

Kumar, S., Tansley-Hancock, O., Sedley, W., Winston, J. S., Callaghan, M. F., Allen, M., ... & Griffiths, T. D. (2017). The brain basis for misophonia. Current Biology, 27(4), 527-533.

Landry, E. C., Sandoval, X., Simeone, C. N., Tidball, G., Lea, J., & Westerberg, B. D. (2020). Systematic Review and Network Meta-analysis of Cognitive and/or Behavioral Therapies (CBT) for Tinnitus. Otology & Neurotology, 41(2), 153–166. https://doi.org/10.1097/MAO.0000000000002472

Noller, C. M., Levine, Y. A., Urakov, T. M., Aronson, J. P., & Nash, M. S. (2019). Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Frontiers in Neuroscience, 13, 911. https://doi.org/10.3389/fnins.2019.00911

O'Sullivan, G. H., Noshirvani, H., Başoğlu, M., Marks, I. M., Swinson, R., Kuch, K., & Kirby, M. (1994). Safety and side-effects of alprazolam. Controlled study in agoraphobia with panic disorder. The British Journal of Psychiatry, 165(1), 79–86. https://doi.org/10.1192/bjp.165.1.79

Penner, M. J., & Burns, E. M. (1987). The dissociation of SOAEs and tinnitus. Journal of Speech and Hearing Research, 30(3), 396–403. https://doi.org/10.1044/jshr.3003.396

Perreau, A., Tyler, R., & Mancini, P. C. (2020). Programming a Cochlear Implant for Tinnitus Suppression. Journal of the American Academy of Audiology, 31(4), 302–308. https://doi.org/10.3766/jaaa.18086

Peter, N., & Kleinjung, T. (2019). Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. Journal of Zhejiang University. Science. B, 20(2), 116–130. https://doi.org/10.1631/jzus.B1700117

Potgieter, I., MacDonald, C., Partridge, L., Cima, R., Sheldrake, J., & Hoare, D. J. (2019). Misophonia: A scoping review of research. Journal of Clinical Psychology, 75(7), 1203-1218.

Roushani, K., & Mehrabizadeh Honarmand, M. (2021). The Effectiveness of Cognitive-behavioral Therapy on Anger in Female Students with Misophonia: A Single-Case Study. Iranian Journal of medical sciences, 46(1), 61–67. https://doi.org/10.30476/ijms.2019.82063

Scherer, R. W., Erdman, S. A., Gold, S., Formby, C., & TRTT Research Group (2020). Treatment fidelity in the Tinnitus Retraining Therapy Trial. Trials, 21(1), 670. https://doi.org/10.1186/s13063-020-04530-9

Schneider, R. L., & Arch, J. J. (2017). Case study: a novel application of mindfulness-and acceptance-based components to treat misophonia. Journal of Contextual Behavioral Science, 6(2), 221-225.

Schröder, A., van Diepen, R., Mazaheri, A., Petropoulos-Petalas, D., Soto de Amesti, V., Vulink, N., & Denys, D. (2014). Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients. Frontiers in Behavioral Neuroscience, 8, 123. https://doi.org/10.3389/fnbeh.2014.00123

Schröder, A., van Wingen, G., Eijsker, N., San Giorgi, R., Vulink, N. C., Turbyne, C., & Denys, D. (2020). Publisher Correction: Misophonia is associated with altered brain activity in the auditory cortex and salience network. Scientific Reports, 10(1), 4066. https://doi.org/10.1038/s41598-020-59862-y

Schröder, A., Vulink, N., & Denys, D. (2013). Misophonia: diagnostic criteria for a new psychiatric disorder. PLoS One, 8(1), e54706. https://doi.org/10.1371/journal.pone.0054706

Searchfield, G. D., Boone, M., Bensam, J., Durai, M., Hodgson, S. A., Linford, T., & Vogel, D. (2020). A proof-of-concept study of the benefits of a single-session of tinnitus instruction and counselling with homework on tinnitus. International Journal of Audiology, 59(5), 374–382. https://doi.org/10.1080/14992027.2020.1719436

Silva, F., & Sanchez, T. G. (2019). Evaluation of selective attention in patients with misophonia. Brazilian Journal of Otorhinolaryngology, 85(3), 303–309. https://doi.org/10.1016/j.bjorl.2018.02.005

Whitehurst, T. K., & McGivern, J. P. (2007). U.S. Patent No. 7,167,751. Washington, DC: U.S. Patent and Trademark Office.

Yap, J., Keatch, C., Lambert, E., Woods, W., Stoddart, P. R., & Kameneva, T. (2020). Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Frontiers in Neuroscience, 14, 284. https://doi.org/10.3389/fnins.2020.00284

Ylikoski, J., Markkanen, M., Pirvola, U., Lehtimäki, J. A., Ylikoski, M., Jing, Z., Sinkkonen, S. T., & Mäkitie, A. (2020). Stress and Tinnitus; Transcutaneous Auricular Vagal Nerve Stimulation Attenuates Tinnitus-Triggered Stress Reaction. Frontiers in Psychology, 11, 570196. https://doi.org/10.3389/fpsyg.2020.570196

Downloads

Published

2021-10-11

How to Cite

Umashankar, A., & Prabhu, P. (2021). The application of vagus nerve stimulation in individuals with misophonia. Neuroscience Research Notes, 3(5), 36–43. https://doi.org/10.31117/neuroscirn.v3i5.105