Brain-wide gamma activity during passive listening of rhythmic Quranic recitations in a naturalistic setting under MEG/EEG simultaneous recording

Authors

DOI:

https://doi.org/10.31117/neuroscirn.v9i1.437

Keywords:

Functional Connectivity, Quranic recitation, gamma brainwave, magnetoencephalography (MEG), Electroencephalography (EEG)

Abstract

The involvement of high-frequency brainwaves in the neural processing of rhythmic Quranic recitation remains unclear, compared to the low-frequency brainwaves. This study examined the synchronisation of high-frequency gamma brainwaves (30–80 Hz) during passive listening to Quranic recitation in three different rhythmic styles. This experimental, cross-sectional study involving 29 healthy adult participants (14 Muslim, 15 non-Muslim) was conducted at the MEG laboratory at Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. The average gamma source estimation was calculated using minimum-norm imaging, and the whole-brain functional connectivity of magnetoencephalography-electroencephalography (M/EEG) data was quantified using phase-locking value. The results revealed that the gamma waves synchronised in a network of brain regions that included the supramarginal gyrus, anterior cingulate cortex, hippocampus, central region, temporal lobe, inferior frontal gyrus, Rolandic and frontal operculum, cerebellum, visual network regions, and superior parietal gyrus. The findings highlight brain-wide activation during Quranic recitation in Quran-naïve non-Muslim participants, comparable to that in Muslim participants familiar with the employed rhythmic recitation. Both groups also exhibited increased language perception of the Quranic recitation, although they did not understand Arabic (non-Arab natives). The high-frequency gamma activity in this study suggests that receptive listening to different styles of rhythmic Quranic recitation engages neural networks responsible for language and musical perception, emotional regulation, memory and attention, visual mental imagery, and multisensory processing.

Downloads

Download data is not yet available.

References

Adamaszek, M., D'Agata, F., Ferrucci, R., Habas, C., Keulen, S., Kirkby, K. C., Leggio, M., Mariën, P., Molinari, M., Moulton, E., Orsi, L., Van Overwalle, F., Papadelis, C., Priori, A., Sacchetti, B., Schutter, D. J., Styliadis, C., & Verhoeven, J. (2017). Consensus paper: Cerebellum and emotion. Cerebellum, 16(2), 552-576. https://doi.org/10.1007/s12311-016-0815-8

Al-Galal, S. A. Y., & Alshaikhli, I. F. T. (2017). Analyzing brainwaves while listening to Quranic recitation compared with listening to music based on EEG signals. International Journal on Perceptive and Cognitive Computing, 3(1), 1-5. https://doi.org/10.31436/ijpcc.v3i1.43

Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27(7), 1286-1297. https://doi.org/10.1162/jocn_a_00801

Braboszcz, C., Cahn, B. R., Levy, J., Fernandez, M., & Delorme, A. (2017). Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS One, 12(1), e0170647. https://doi.org/10.1371/journal.pone.0170647

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1-38. https://doi.org/10.1196/annals.1440.011

Burke, J. F., Ramayya, A. G., & Kahana, M. J. (2015). Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility? Current Opinion in Neurobiology, 31, 104-110. https://doi.org/10.1016/j.conb.2014.09.003

Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488

Che Wan Mohd Rozali, W. N. A., Ishak, I., Mat Ludin, A. F., Ibrahim, F. W., Abd Warif, N. M., & Che Roos, N. A. (2022). The impact of listening to, reciting, or memorizing the Quran on physical and mental health of Muslims: Evidence from systematic review. International Journal of Public Health, 67, 1604998. https://doi.org/10.3389/ijph.2022.1604998

Cheetham, D. (2019). Multi-modal language input: A learned superadditive effect. Applied Linguistics Review, 10(2), 179-200. https://doi.org/doi:10.1515/applirev-2017-0036

Doufesh, H., Ibrahim, F., & Safari, M. (2016). Effects of Muslims praying (Salat) on EEG gamma activity. Complementary Therapies in Clinical Practice, 24, 6-10. https://doi.org/10.1016/j.ctcp.2016.04.004

Fastenrath, M., Spalek, K., Coynel, D., Loos, E., Milnik, A., Egli, T., Schicktanz, N., Geissmann, L., Roozendaal, B., Papassotiropoulos, A., & de Quervain, D. J. (2022). Human cerebellum and corticocerebellar connections involved in emotional memory enhancement. Proceedings of the National Academy of Sciences, 119(41), e2204900119. https://doi.org/doi:10.1073/pnas.2204900119

Fell, J., Axmacher, N., & Haupt, S. (2010). From alpha to gamma: Electrophysiological correlates of meditation-related states of consciousness. Medical Hypotheses, 75(2), 218-224. https://doi.org/10.1016/j.mehy.2010.02.025

Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J. R., van Wassenhove, V., Wibral, M., & Schoffelen, J. M. (2013). Good practice for conducting and reporting MEG research. Neuroimage, 65, 349-363. https://doi.org/10.1016/j.neuroimage.2012.10.001

Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S., & Eickhoff, S. B. (2018). functional segregation of the right inferior frontal gyrus: Evidence from coactivation-based parcellation. Cerebral Cortex, 29(4), 1532-1546. https://doi.org/10.1093/cercor/bhy049

Hojjati, A., Rahimi, A., Farehani, M. D., Sobhi-Gharamaleki, N., & Alian, B. (2014). Effectiveness of Quran Tune on memory in children. Procedia - Social and Behavioral Sciences, 114, 283-286. https://doi.org/10.1016/j.sbspro.2013.12.699

Ismail, S., Jusoh, M. H., Juahir, H., Idris, Z., & Reza, M. F. (2022). Activation of mental imagery neural network revealed during listening to Fatihah Chapter; a neuroimaging study. Bangladesh Journal of Medical Science, 21(3), 710-716. https://doi.org/10.3329/bjms.v21i3.59589

Jobson, K. R., Hoffman, L. J., Metoki, A., Popal, H., Dick, A. S., Reilly, J., & Olson, I. R. (2022). Language and the cerebellum: Structural connectivity to the eloquent brain. Neurobiology of Language, 1-24. https://doi.org/10.1162/nol_a_00085

Kannan, M. A., Ab Aziz, N. A., Ab Rani, N. S., Abdullah, M. W., Mohd Rashid, M. H., Shab, M. S., Ismail, N. I., Ab Ghani, M. A., Reza, F., & Muzaimi, M. (2022). A review of the holy Quran listening and its neural correlation for its potential as a psycho-spiritual therapy. Heliyon, 8(12), e12308. https://doi.org/10.1016/j.heliyon.2022.e12308

Lee, D. J., Kulubya, E., Goldin, P., Goodarzi, A., & Girgis, F. (2018). Review of the neural oscillations underlying meditation. Frontiers in Neuroscience, 12, 178. https://doi.org/10.3389/fnins.2018.00178

Levitin, D. J., & Menon, V. (2003). Musical structure is processed in “language” areas of the brain: A possible role for Brodmann Area 47 in temporal coherence. Neuroimage, 20, 2142–2152. https://doi.org/10.1016/j.neuroimage.2003.08.016

Lin, Y.-P., Duann, J.-R., Feng, W., Chen, J.-H., & Jung, T.-P. (2014). Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis. Journal of NeuroEngineering and Rehabilitation, 11(1), 18. https://doi.org/10.1186/1743-0003-11-18

Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communication, 9, 394. https://doi.org/10.1038/s41467-017-02791-8

Mălîia, M.-D., Donos, C., Barborica, A., Popa, I., Ciurea, J., Cinatti, S., & Mîndruţă, I. (2018). Functional mapping and effective connectivity of the human operculum. Cortex, 109, 303-321. https://doi.org/10.1016/j.cortex.2018.08.024

Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C. H. S., Beaton, A., Desmond, J., De Witte, E., Fawcett, A. J., Hertrich, I., Küper, M., Leggio, M., Marvel, C., Molinari, M., Murdoch, B. E., Nicolson, R. I., Schmahmann, J. D., Stoodley, C. J., Thürling, M., Timmann, D., Wouters, E., & Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. The Cerebellum, 13(3), 386-410. https://doi.org/10.1007/s12311-013-0540-5

Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. Neuroimage, 214, 116768. https://doi.org/10.1016/j.neuroimage.2020.116768

Mohd Nasir, S. A., & Wan Mahmud, W. M. H. (2015). Brain signal analysis using different types of music. International Journal of Integrated Engineering, 7(3), 31-36.

Nestor, P. G., Nakamura, M., Niznikiewicz, M., Thompson, E., Levitt, J. J., Choate, V., Shenton, M. E., & McCarley, R. W. (2013). In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition. Social Cognitive and Affective Neuroscience, 8(4), 460-467. https://doi.org/10.1093/scan/nss018

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1-25. https://doi.org/10.1002/hbm.1058

Palomero-Gallagher, N., Hoffstaedter, F., Mohlberg, H., Eickhoff, S. B., Amunts, K., & Zilles, K. (2019). Human pregenual anterior cingulate cortex: Structural, functional, and connectional heterogeneity. Cerebral Cortex, 29(6), 2552-2574. https://doi.org/10.1093/cercor/bhy124

Popescu, M., Otsuka, A., & Ioannides, A. A. (2004). Dynamics of brain activity in motor and frontal cortical areas during music listening: A magnetoencephalographic study. Neuroimage, 21(4), 1622-1638. https://doi.org/10.1016/j.neuroimage.2003.11.002

Reza, F., Begum, T., Omar, H., Muzaimi, M., & Abdullah, J. M. (2012). Insights from the Preliminary Autocorrelation Analysis of Low Frequency Neuronal Oscillations during Quran Listening. ASM Science Journal, 6(1), 39-45.

Schomers, M. R., & Pulvermüller, F. (2016). Is the Sensorimotor Cortex Relevant for Speech Perception and Understanding? An Integrative Review [Review]. Frontiers in Human Neuroscience, 10, 435. https://doi.org/10.3389/fnhum.2016.00435

Simony, E., & Chang, C. (2020). Analysis of stimulus-induced brain dynamics during naturalistic paradigms. Neuroimage, 216, 116461. https://doi.org/10.1016/j.neuroimage.2019.116461

Stanford, T., & Stein, B. (2007). Superadditivity in multisensory integration: Putting the computation in context. NeuroReport, 18, 787-792. https://doi.org/10.1097/WNR.0b013e3280c1e315

Sutoko, S., Atsumori, H., Obata, A., Funane, T., Kandori, A., Shimonaga, K., Hama, S., Yamawaki, S., & Tsuji, T. (2020). Lesions in the right Rolandic operculum are associated with self-rating affective and apathetic depressive symptoms for post-stroke patients. Scientific Reports, 10(1), 20264. https://doi.org/10.1038/s41598-020-77136-5

Tang, J., LeBel, A., Jain, S., & Huth, A. G. (2023). Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5), 858-866. https://doi.org/10.1038/s41593-023-01304-9

Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine & Biology, 51(7), 1759-1768. https://doi.org/10.1088/0031-9155/51/7/008

Traikapi, A., & Konstantinou, N. (2021). Gamma oscillations in Alzheimer’s disease and their potential therapeutic role. Frontiers in Systems Neuroscience, 15, 782399 https://doi.org/10.3389/fnsys.2021.782399

Triarhou, L. C. (2021). Cytoarchitectonics of the Rolandic operculum: Morphofunctional ponderings. Brain Structure and Function, 226(4), 941-950. https://doi.org/10.1007/s00429-021-02258-z

Vaghefi, M., Nasrabadi, A. M., Golpayegani, S. M. R. H., Mohammadi, M. R., & Gharibzadeh, S. (2015). Spirituality and brain waves. Journal of Medical Engineering & Technology, 39(2), 153-158. https://doi.org/10.3109/03091902.2014.1001528

Vaghefi, M., Nasrabadi, A. M., Hashemi Golpayegani, S. M. R., Mohammadi, M. R., & Gharibzadeh, S. (2019). Nonlinear analysis of electroencephalogram signals while listening to the holy Quran. Journal of Medical Signals and Sensors, 9(2), 100-110. https://doi.org/10.4103/jmss.JMSS_37_18

Wiesman, A. I., & Wilson, T. W. (2019). Posterior alpha and gamma oscillations index divergent and superadditive effects of cognitive interference. Cerebral Cortex, 30(3), 1931-1945. https://doi.org/10.1093/cercor/bhz214

Wilkins, R. W., Hodges, D. A., Laurienti, P. J., Steen, M., & Burdette, J. H. (2014). Network science and the effects of music preference on functional brain connectivity: From Beethoven to Eminem. Scientific Reports, 4(6130), 1-7. https://doi.org/10.1038/srep06130

Yasir Qadhi, A. A. (1999). An introduction to the sciences of the Qur`aan. Al-Hidayah Publishing and Distribution.

Zhu, Y., Gao, H., Tong, L., Li, Z., Wang, L., Zhang, C., Yang, Q., & Yan, B. (2019). Emotion regulation of hippocampus using real-time fmri neurofeedback in healthy human. Frontiers in Human Neuroscience, 13, 242. https://doi.org/10.3389/fnhum.2019.00242

Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. https://doi.org/10.1523/JNEUROSCI.1500-22.2023

Downloads

Published

2026-01-10

How to Cite

Ab Aziz, N. A., Ab Rani , N. S., Mohd Rashid , M. H., Kannan, M. A., Abdullah, M. W., Ab Ghani, M. A., Qaddoumi, N., Nazir, R., Abd Hamid, A. I., & Mustapha , M. (2026). Brain-wide gamma activity during passive listening of rhythmic Quranic recitations in a naturalistic setting under MEG/EEG simultaneous recording. Neuroscience Research Notes, 9(1), 437.1–437.14. https://doi.org/10.31117/neuroscirn.v9i1.437

Most read articles by the same author(s)