Emerging trends in neuromodulation for schizophrenia: a global bibliometric analysis

Authors

  • Nurfaizatul Aisyah Ab Aziz Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, Sarawak, Malaysia
  • Siti Atiyah Ali Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, Sarawak, Malaysia
  • Nor Asyikin Fadzil Psychiatry Department, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • Zamzuri Idris 1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia 2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • Sabarisah Hashim 1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia 2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia

DOI:

https://doi.org/10.31117/neuroscirn.v7i2.317

Keywords:

Neuromodulation, Schizophrenia, Neurostimulation, Non-pharmaceutical treatment, Bibliometric

Abstract

The utilization of neuromodulation techniques is increasingly capturing the attention of researchers and clinicians as potential non-pharmaceutical interventions for treating schizophrenia, especially among drug-resistant schizophrenia patients. Assessing the existing landscape of research activity and identifying gaps in neuromodulation-schizophrenia research is crucial for strategic planning and guiding future research in this domain. This bibliometric analysis paper aims to discern the publications and research trends in neuromodulation schizophrenia studies spanning 2019 to 2023. The Scopus database search was performed using the related keywords. Neuromodulation-schizophrenia-related publications were retrieved from the Scopus database from 2019 to 2023. Bibliometric analyses were performed using Harzing's Publish or Perish, Microsoft Excel and VOS viewer software programs. Three hundred fifty-three publications from the Scopus database were retrieved and analyzed to answer the research questions. The highest number of publications, 87, was observed in 2022. The United States led the way in publishing neuromodulation schizophrenia research with 96 articles. Keyword analysis revealed that "transcranial direct current stimulation" (tDCS) and "transcranial magnetic stimulation" (TMS) were the most prevalent neuromodulation techniques investigated in schizophrenia research. Transcranial-focused ultrasound (TUS) emerged as a novel and current neuromodulation technique explored in treating schizophrenia, as indicated by the analysis of selected journal articles. This bibliometric paper provides insights into the current status, knowledge base, and future directions of neuromodulation-schizophrenia studies, which will serve future researchers in focusing on applying neuromodulation techniques as potential non-pharmaceutical interventions for schizophrenia.

References

Ahmi, A. (2022). Bibliometric analysis for beginners (Volume 2). UUM Press, Malaysia.

Ahn, S., Mellin, J. M., Alagapan, S., Alexander, M. L., Gilmore, J. H., Jarskog, L. F., & Fröhlich, F. (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. NeuroImage, 186, 126–136. https://doi.org/10.1016/j.neuroimage.2018.10.056

Akhtar, H., Bukhari, F., Nazir, M., Anwar, M. N., & Shahzad, A. (2016). Therapeutic efficacy of neurostimulation for depression: techniques, current modalities, and future challenges. Neuroscience Bulletin, 32(1), 115–126. https://doi.org/10.1007/s12264-015-0009-2

Alsharif, A. H., Salleh, N. Z. M., Baharun, R., & E, A. R. H. (2021). Neuromarketing research in the last five years: a bibliometric analysis. Cogent Business & Management, 8(1), 1978620. https://doi.org/10.1080/23311975.2021.1978620

Amico, F., Keane, M., Lee, M., & McCarthy-Jones, S. (2022). A feasibility study of LORETA Z-Score neurofeedback training in adults with schizophrenia-spectrum disorder experiencing treatment-resistant auditory verbal hallucinations. NeuroRegulation, 9(3), 135–146. https://doi.org/10.15540/nr.9.3.135

Bation, R., Magnin, C., Poulet, E., Mondino, M., & Brunelin, J. (2021). Intermittent theta burst stimulation for negative symptoms of schizophrenia—A double-blind, sham-controlled pilot study. NPJ Schizophrenia, 7(1), 10. https://doi.org/10.1038/s41537-021-00138-3

Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., & Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychological Medicine, 50(15), 2465–2486. https://doi.org/10.1017/s0033291720003670

Bergfeld, I. O., Dijkstra, E., Graat, I., De Koning, P., Van Den Boom, B. J. G., Arbab, T., Vulink, N., Denys, D., Willuhn, I., & Mocking, R. J. T. (2021). Invasive and non-invasive neurostimulation for OCD. Current Topics in Behavioral Neurosciences, 49, 399–436. https://doi.org/10.1007/7854_2020_206

Biačková, N., Adamová, A., & Klírová, M. (2024). Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. European Archives of Psychiatry and Clinical Neuroscience, 274, 803–823. https://doi.org/10.1007/s00406-023-01687-7

Bidzinski, K. K., Lowe, D. J. E., Sanches, M., Sorkhou, M., Boileau, I., Kiang, M., Blumberger, D. M., Remington, G., Ma, C., Castle, D. J., Rabin, R. A., & George, T. P. (2022). Investigating repetitive transcranial magnetic stimulation on cannabis use and cognition in people with schizophrenia. Schizophrenia, 8, 1. https://doi.org/10.1038/s41537-022-00210-6

Bloom, P. A., Pagliaccio, D., Zhang, J., Bauer, C. C. C., Kyler, M., Greene, K. D., Treves, I., Morfini, F., Durham, K., Cherner, R., Bajwa, Z., Wool, E., Olafsson, V., Lee, R. F., Bidmead, F., Cardona, J., Kirshenbaum, J. S., Ghosh, S., Hinds, O., . . . Auerbach, R. P. (2023). Mindfulness-based real-time fMRI neurofeedback: a randomized controlled trial to optimize dosing for depressed adolescents. BMC Psychiatry, 23, 757. https://doi.org/10.1186/s12888-023-05223-8

Bonotis, K., Anargyros, K., Liaskopoulos, N., & Barlogianni, A. (2022). Evaluation of memory performance in patients with brain disorders following rTMS treatment. A systematic review. Clinical Neurophysiology, 135, 126–153. https://doi.org/10.1016/j.clinph.2021.11.078

Boudewyn, M. A., Scangos, K., Ranganath, C., & Carter, C. S. (2020). Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology, 45(11), 1877–1883. https://doi.org/10.1038/s41386-020-0750-8

Cascella, N., Butala, A. A., Mills, K., Kim, M. J., Salimpour, Y., Wojtasievicz, T., Hwang, B., Cullen, B., Figee, M., Moran, L., Lenz, F., Sawa, A., Schretlen, D. J., & Anderson, W. (2021). Deep brain stimulation of the substantia Nigra pars reticulata for Treatment-Resistant Schizophrenia: a case report. Biological Psychiatry, 90(10), e57–e59. https://doi.org/10.1016/j.biopsych.2021.03.007

Chang, C., Huang, C. C., Chung, Y., Im, J. J., Lin, Y., Ma, C., Tzeng, N., & Chang, H. (2021). Online left-hemispheric in-phase frontoparietal theta TACS for the treatment of negative symptoms of schizophrenia. Journal of Personalized Medicine, 11(11), 1114. https://doi.org/10.3390/jpm11111114

Chang, C., Lane, H., & Lin, C. (2018). Brain stimulation in Alzheimer’s disease. Frontiers in Psychiatry, 9, 201. https://doi.org/10.3389/fpsyt.2018.00201

Chase, H. W., Boudewyn, M. A., Carter, C. S., & Phillips, M. L. (2020). Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Molecular Psychiatry, 25(2), 397–407. https://doi.org/10.1038/s41380-019-0499-9

Chen, X., Ji, G., Zhu, C., Bai, X., Wang, L., He, K., Gao, Y., Tao, L., Yu, F., Tian, Y., & Wang, K. (2019). Neural correlates of auditory verbal hallucinations in schizophrenia and the therapeutic response to Theta-Burst transcranial magnetic stimulation. Schizophrenia Bulletin, 45(2), 474–483. https://doi.org/10.1093/schbul/sby054

Chiliza, B., Asmal, L., Oosthuizen, P., Van Niekerk, E., Erasmus, R., Kidd, M., Malhotra, A., & Emsley, R. (2015). Changes in body mass and metabolic profiles in patients with first-episode schizophrenia treated for 12 months with a first-generation antipsychotic. European Psychiatry, 30(2), 277–283. https://doi.org/10.1016/j.eurpsy.2014.11.013

Correll, C. U., Cortese, S., Croatto, G., Monaco, F., Krinitski, D., Arrondo, G., Ostinelli, E. G., Zangani, C., Fornaro, M., Estradé, A., Fusar‐Poli, P., Carvalho, A. F., & Solmi, M. (2021). Efficacy and acceptability of pharmacological, psychosocial, and brain stimulation interventions in children and adolescents with mental disorders: an umbrella review. World Psychiatry, 20(2), 244–275. https://doi.org/10.1002/wps.20881

Corripio, I., Roldán, A., Sarró, S., McKenna, P. J., Alonso-Solís, A., Rabella, M., Díaz, A., Puigdemont, D., Pérez-Solà, V., Álvarez, E., Arévalo, A., Padilla, P. P., Ruiz-Idiago, J. M., Rodríguez, R., Molet, J., Pomarol-Clotet, E., & Portella, M. J. (2020). Deep brain stimulation in treatment resistant schizophrenia: A pilot randomized cross-over clinical trial. EBioMedicine, 51, 102568. https://doi.org/10.1016/j.ebiom.2019.11.029

Cui, H., Jiang, L., Wei, Y., Li, W., Li, H., Zhu, J., Pang, J., Wang, J., & Li, C. (2019). Efficacy and safety of repetitive transcranial magnetic stimulation for generalised anxiety disorder: A meta-analysis. General Psychiatry, 32(5), e100051. https://doi.org/10.1136/gpsych-2019-100051

Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423. https://doi.org/10.1016/s1364-6613(03)00197-9

Dokucu, M. E. (2015). Neuromodulation treatments for schizophrenia. Current Treatment Options in Psychiatry, 2(3), 339–348. https://doi.org/10.1007/s40501-015-0055-4

Downar, J., & Daskalakis, Z. J. (2013). New targets for RTMS in Depression: A review of convergent evidence. Brain Stimulation, 6(3), 231–240. https://doi.org/10.1016/j.brs.2012.08.006

Elsevier. (2023). How Scopus works: Information about Scopus product features. https://www.elsevier.com/solutions/scopus/how-scopus-works/content

Fregni, F., El-Hagrassy, M. M., Pacheco-Barrios, K., Carvalho, S., Leite, J., Simis, M., Brunelin, J., Nakamura-Palacios, E. M., Marangolo, P., Venkatasubramanian, G., San-Juan, D., Caumo, W., Bikson, M., Brunoni, A. R., Cardenas-Rojas, A., Giannoni-Luza, S., Leao, J., Leffa, D. T., Mejia-Pando, P. F., . . . Zeng, H. (2021). Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. International Journal of Neuropsychopharmacology, 24(4), 256–313. https://doi.org/10.1093/ijnp/pyaa051

Goyal, K., & Kumar, S. (2020). Financial literacy: A systematic review and bibliometric analysis. International Journal of Consumer Studies, 45(1), 80–105. https://doi.org/10.1111/ijcs.12605

Grosselin, F., Breton, A., Yahia-Cherif, L., Wang, X., Spinelli, G., Hugueville, L., Fossati, P., Attal, Y., Navarro-Sune, X., Chavez, M., & George, N. (2021). Alpha activity neuromodulation induced by individual alpha-based neurofeedback learning in ecological context: a double-blind randomized study. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-96893-5

Guan, H. Y., Zhao, J. M., Wang, K. Q., Su, X. R., Pan, Y. F., Guo, J. M., Jiang, L., Wang, Y. H., Liu, H. Y., Sun, S. G., Wu, H. R., Ren, Y. P., Geng, H. S., Liu, X. W., Yu, H. J., Wei, B. C., Li, X. P., Wu, H. E., Tan, S. P., Xiu, M. H. & Zhang, X. Y. (2020). High-frequency neuronavigated rTMS effect on clinical symptoms and cognitive dysfunction: a pilot double-blind, randomized controlled study in Veterans with schizophrenia. Translational Psychiatry, 10(1), 79. https://doi.org/10.1038/s41398-020-0745-6

Hamani, C., & Moro, E. (2012). Chapter one - Neuromodulation: a more comprehensive concept beyond deep brain stimulation. International Review of Neurobiology, 107, 1–3. https://doi.org/10.1016/B978-0-12-404706-8.00001-2

Harzing, A., & Alakangas, S. (2015). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/s11192-015-1798-9

Iimori, T., Nakajima, S., Miyazaki, T., Tarumi, R., Ogyu, K., Wada, M., Tsugawa, S., Masuda, F., Daskalakis, Z. J., Blumberger, D. M., Mimura, M., & Noda, Y. (2019). Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: A systematic review. Progress in Neuro-psychopharmacology & Biological Psychiatry, 88, 31–40. https://doi.org/10.1016/j.pnpbp.2018.06.014

Johnson, M. D., Lim, H. H., Netoff, T. I., Connolly, A. T., Johnson, N., Roy, A., Holt, A., Lim, K. O., Carey, J. R., Vitek, J. L., & He, N. B. (2013). Neuromodulation for brain disorders: Challenges and opportunities. IEEE Transactions on Biomedical Engineering, 60(3), 610–624. https://doi.org/10.1109/tbme.2013.2244890

Kostova, R., Cecere, R., Thut, G., & Uhlhaas, P. J. (2020). Targeting cognition in schizophrenia through transcranial direct current stimulation: A systematic review and perspective. Schizophrenia Research, 220, 300–310. https://doi.org/10.1016/j.schres.2020.03.002

Krames, E. S., Peckham, P. H., Rezai, A., & Aboelsaad, F. (2009). What is neuromodulation? Neuromodulation, 2009, 3–8. https://doi.org/10.1016/B978-0-12-374248-3.00002-1

Kumar, S., Sureka, R., & Colombage, S. (2020). Capital structure of SMEs: a systematic literature review and bibliometric analysis. Management Review Quarterly, 70(4), 535–565. https://doi.org/10.1007/s11301-019-00175-4

Lindenmayer, J., Kulsa, M. K. C., Sultana, T., Kaur, A., Yang, R., Ljuri, I., Parker, B., & Khan, A. (2019). Transcranial direct-current stimulation in ultra-treatment-resistant schizophrenia. Brain Stimulation, 12(1), 54–61. https://doi.org/10.1016/j.brs.2018.10.002

Luo, Y., Sun, Y., Tian, X., Zheng, X., Wang, X., Li, W., Wu, X., Shu, B., & Hou, W. (2021). Deep brain stimulation for Alzheimer’s disease: stimulation parameters and potential mechanisms of action. Frontiers in Aging Neuroscience, 13, 619543. https://doi.org/10.3389/fnagi.2021.619543

Markiewicz, R., Markiewicz-Gospodarek, A., Dobrowolska, B., & Łoza, B. (2021). Improving clinical, cognitive, and psychosocial dysfunctions in patients with schizophrenia: a neurofeedback randomized control trial. Neural Plasticity, 2021, 1–10. https://doi.org/10.1155/2021/4488664

Moeller, S. J., Gil, R., Weinstein, J. J., Baumvoll, T., Wengler, K., Fallon, N., Van Snellenberg, J. X., Abeykoon, S., Perlman, G., Williams, J., Manu, L., Slifstein, M., Cassidy, C. M., Martinez, D. M., & Abi-Dargham, A. (2022). Deep rTMS of the insula and prefrontal cortex in smokers with schizophrenia: Proof-of-concept study. Schizophrenia, 8, 6. https://doi.org/10.1038/s41537-022-00224-0

Nestoros, J. N., & Vallianatou, N. G. (2022). Infra-Low Frequency Neurofeedback rapidly ameliorates schizophrenia symptoms: A case report of the first session. Frontiers in Human Neuroscience, 16, 923695. https://doi.org/10.3389/fnhum.2022.923695

Okazaki, Y. O., Horschig, J. M., Luther, L., Oostenveld, R., Murakami, I., & Jensen, O. (2015). Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance. NeuroImage, 107, 323–332. https://doi.org/10.1016/j.neuroimage.2014.12.014

Pan, T., Pan, Y., Tsai, S., Tsai, C., & Yang, F. (2023). Focused ultrasound stimulates the prefrontal cortex and prevents MK-801-Induced psychiatric symptoms of schizophrenia in rats. Schizophrenia Bulletin, 50(1), 120–131. https://doi.org/10.1093/schbul/sbad078

Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. Pharmacy and Therapeutics, 39(9), 638-645. https://pubmed.ncbi.nlm.nih.gov/25210417

Pazooki, K., Leibetseder, M., Renner, W., Gougleris, G., & Kapsali, E. (2019). Neurofeedback treatment of negative symptoms in schizophrenia: Two case reports. Applied Psychophysiology and Biofeedback, 44, 31–39. https://doi.org/10.1007/s10484-018-9417-1

Pranckutė, R. (2021). Web of Science (WOS) and Scopus: the titans of bibliographic information in today’s academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012

Raedler, T. J. (2010). Cardiovascular aspects of antipsychotics. Current Opinion in Psychiatry, 23(6), 574–581. https://doi.org/10.1097/yco.0b013e32833f46c9

Rizvi, S., & Khan, A. M. (2019). Use of transcranial magnetic stimulation for depression. Curēus, 11(5), 1-3. https://doi.org/10.7759/cureus.4736

Rodrigues, P. A., Zaninotto, A. L., Neville, I. S., Hayashi, C. Y., Brunoni, A. R., Teixeira, M. J., & Paiva, W. S. (2019). Transcranial magnetic stimulation for the treatment of anxiety disorder. Neuropsychiatric Disease and Treatment, 15, 2743–2761. https://doi.org/10.2147/ndt.s201407

Schuepbach, W., Rau, J., Knudsen, K., Volkmann, J., Krack, P., Timmermann, L., Hälbig, T., Hesekamp, H., Navarro, S., Meier, N., Falk, D., Mehdorn, M., Paschen, S., Maarouf, M., Barbe, M., Fink, G., Kupsch, A., Gruber, D., Schneider, G., Deuschl, G. (2013). Neurostimulation for Parkinson’s disease with early motor complications. New England Journal of Medicine, 368(7), 610–622. https://doi.org/10.1056/nejmoa1205158

Schülke, R., & Straube, B. (2019). Transcranial direct current stimulation improves semantic Speech–Gesture matching in patients with schizophrenia spectrum disorder. Schizophrenia Bulletin, 45(3), 522–530. https://doi.org/10.1093/schbul/sby144

Sorger, B., Scharnowski, F., Linden, D. E., Hampson, M., & Young, K. D. (2019). Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. NeuroImage, 186, 256–265. https://doi.org/10.1016/j.neuroimage.2018.11.004

Ting, W. K. C., Fadul, F. a. R., Fecteau, S., & Ethier, C. (2021). Neurostimulation for stroke rehabilitation. Frontiers in Neuroscience, 15, 649459. https://doi.org/10.3389/fnins.2021.649459

U. S. Food And Drug Administration (2018). FDA permits marketing of transcranial magnetic stimulation for treatment of obsessive compulsive disorder. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-transcranial-magnetic-stimulation-treatment-obsessive-compulsive-disorder

Uludag, K., Wang, D. M., Goodman, C., Chen, D. C., Wang, L., & Zhang, X. (2021). Prevalence, clinical correlates and risk factors associated with Tardive Dyskinesia in Chinese patients with schizophrenia. Asian Journal of Psychiatry, 66, 102877. https://doi.org/10.1016/j.ajp.2021.102877

Uludag, K., Wang, D. M., Mohamoud, Y., Wu, H. E., & Zhang, X. (2023). Antipsychotic-based machine learning models may help prediction of tardive dyskinesia in patients with schizophrenia. Schizophrenia Research, 252, 33–35. https://doi.org/10.1016/j.schres.2022.12.026

Valiengo, L. D. C. L., Goerigk, S., Gordon, P. C., Padberg, F., Serpa, M. H., Koebe, S., Santos, L. a. D., Lovera, R. a. M., De Carvalho, J. B., Van De Bilt, M., Lacerda, A. L. T., Elkis, H., Gattaz, W. F., & Brunoni, A. R. (2020). Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in schizophrenia. JAMA Psychiatry, 77(2), 121. https://doi.org/10.1001/jamapsychiatry.2019.3199

Walther, S., Kunz, M., Müller, M., Zürcher, C., Vladimirova, I., Bachofner, H., Scherer, K. A., Nadesalingam, N., Stegmayer, K., Bohlhalter, S., & Viher, P. V. (2020). Single session transcranial magnetic stimulation ameliorates hand gesture deficits in schizophrenia. Schizophrenia Bulletin, 46(2), 286-293. https://doi.org/10.1093/schbul/sbz078

Wang, M., & Chai, L. (2018). Three new bibliometric indicators/approaches derived from keyword analysis. Scientometrics, 116(2), 721–750. https://doi.org/10.1007/s11192-018-2768-9

Wang, P., Guan, X., Su, X., Wu, F., & Xiu, M. (2023). A pilot study to examine the association between COX-2 rs5275 polymorphism and the response to repetitive transcranial stimulation in schizophrenia. Schizophrenia, 9, 56. https://doi.org/10.1038/s41537-023-00386-5

Wong, H. C., & Zaman, R. (2019). Neurostimulation in treating ADHD. Psychiatria Danubina, 31(Suppl 3), 265–275. https://pubmed.ncbi.nlm.nih.gov/31488739

World Health Organization: WHO. (2022). Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia

Wu, Y., Yang, Z., & Cui, S. (2022). Update research advances in the application of transcranial magnetic stimulation in the treatment of schizophrenia. Scanning, 2022, 1–5. https://doi.org/10.1155/2022/5415775

Yin, M., Liu, Y., Zhang, L., Zheng, H., Peng, L., Ai, Y., Luo, J., & Hu, X. (2020). Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial. Frontiers in Neural Circuits, 14, 563777. https://doi.org/10.3389/fncir.2020.563777

Yoon, Y. B., Kim, M., Lee, J., Cho, K. I. K., Kwak, S., Lee, T. Y., & Kwon, J. S. (2019). Effect of TDCS on aberrant functional network connectivity in refractory hallucinatory schizophrenia: a pilot study. Psychiatry Investigation, 16(3), 244–248. https://doi.org/10.30773/pi.2018.11.18

Yuan, T., Li, W., Zhang, C., Wei, H., Sun, S., Xu, N., Liu, J., & Xu, T. (2020). Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Translational Neurodegeneration, 9(1), 44. https://doi.org/10.1186/s40035-020-00224-z

Zhai, Z., Ren, L., Song, Z., Xiang, Q., Zhuo, K., Zhang, S., Li, X., Zhang, Y., Jiao, X., Tong, S., Sun, J., & Liu, D. (2023). The efficacy of low-intensity transcranial ultrasound stimulation on negative symptoms in schizophrenia: A double-blind, randomized sham-controlled study. Brain Stimulation, 16(3), 790–792. https://doi.org/10.1016/j.brs.2023.04.021

Zhang, M., Force, R. B., Walker, C., Ahn, S., Jarskog, L. F., & Frohlich, F. (2022). Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. Schizophrenia, 8, 114. https://doi.org/10.1038/s41537-022-00321-0

Zhou, S., & Fang, Y. (2022). Efficacy of Non-Invasive Brain Stimulation for Refractory Obsessive-Compulsive Disorder: A Meta-Analysis of Randomized Controlled Trials. Brain Sciences, 12(7), 943. https://doi.org/10.3390/brainsci12070943

Zhou, Y., Xia, X., Zhao, X., Yang, R., Wu, Y., Liu, J., Lyu, X., Li, Z., Zhang, G., & Du, X. (2023). Efficacy and safety of Transcranial Direct Current Stimulation (tDCS) on cognitive function in chronic schizophrenia with Tardive Dyskinesia (TD): a randomized, double-blind, sham-controlled, clinical trial. BMC Psychiatry, 23, 623. https://doi.org/10.1186/s12888-023-05112-0

Zhuo, K., Tang, Y., Song, Z., Wang, Y., Wang, J., Qian, Z., Li, H., Xiang, Q., Chen, T., Yang, Z., Xu, Y., Fan, X., Wang, J., & Liu, D. (2019). Repetitive transcranial magnetic stimulation as an adjunctive treatment for negative symptoms and cognitive impairment in patients with schizophrenia: a randomized, double-blind, sham-controlled trial. Neuropsychiatric Disease and Treatment, 15, 1141–1150. https://doi.org/10.2147/ndt.s196086

Downloads

Published

2024-06-21

How to Cite

Ab Aziz, N. A., Ali, S. A., Fadzil, N. A., Idris, Z. and Hashim, S. (2024) “Emerging trends in neuromodulation for schizophrenia: a global bibliometric analysis ”, Neuroscience Research Notes, 7(2), pp. 317.1–317.18. doi: 10.31117/neuroscirn.v7i2.317.