Chronic ad libitum ethanol exposure impairs corticolimbic and cerebellar structural neuroplasticity in rats
DOI:
https://doi.org/10.31117/neuroscirn.v9i1.472Keywords:
Dendritic spines, Pyramidal neurons, Purkinje cells, Corticolimbic, Alcohol use disorderAbstract
Consequences of chronic ethanol exposure on cognitive and motor functions are widely studied due to the neurodegeneration that ethanol produces in the cerebellum and other brain areas, including some corticolimbic regions. However, there is scarce information about the structural neuroplasticity effects of chronic ethanol exposure that ultimately lead to characteristic neurodegenerative consequences. For this purpose, we evaluated the effects of chronic ethanol exposure in adult male rats on exploratory behavior (locomotor activity induced by a novel environment) and structural neuroplasticity in corticolimbic and cerebellar neurons. After 90 days of ad libitum ethanol (10%) exposure, the locomotor behavior of the animals did not differ from that of the control group (exposed to water). Structural neuroplasticity was assessed using the Golgi-Cox technique in neurons from corticolimbic areas and the cerebellum. The findings revealed that ethanol exposure induced basilar dendritic atrophy without modifying the dendritic spine density in pyramidal cells in prefrontal cortex layers 3 and 5, the CA1 region of the dorsal hippocampus, and the basolateral amygdala. In contrast, ethanol exposure hypotrophied the dendritic arbor of Purkinje cells and reduced the density of dendritic spines in these cells. These data contribute to the knowledge of the neuroplasticity-related mechanisms underlying the neurodegenerative consequences of chronic ethanol exposure and its cognitive implications.
Downloads
References
Acevedo, M. B., Nizhnikov, M. E., Spear, N. E., Molina, J. C., & Pautassi, R. M. (2013). Ethanol‐induced locomotor activity in adolescent rats and the relationship with ethanol‐induced conditioned place preference and conditioned taste aversion. Developmental Psychobiology, 55(4), 429–442. https://doi.org/10.1002/dev.21048
Afonso, P., De Luca, P., Carvalho, R. S., Cortes, L., Pinheiro, P., Oliveiros, B., Almeida, R. D., Mele, M., & Duarte, C. B. (2019). BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons. Science Signaling, 12(586). https://doi.org/10.1126/scisignal.aav3577
Aguiar, A. S. De, Boaventura, G. T., Abrahão, R. F., Freitas, T. L., Takiya, C. M., Filho, P. J. S., & Silva, V. A. Da. (2009). Ethanol in low chronic dose level attenuates major organic effects in malnourished rats. Biological Research, 42(1), 31–40. https://doi.org/10.4067/S0716-97602009000100004
Alcantara-Gonzalez, F., Juarez, I., Solis, O., Martinez-Tellez, I., Camacho-Abrego, I., Masliah, E., Mena, R., & Flores, G. (2010). Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus, and nucleus accumbens in old rats after chronic donepezil administration. Synapse, 64(10), 786–793. https://doi.org/10.1002/syn.20787
Bailey, A. J., Gerst, K., & Finn, P. R. (2018). Delay discounting of losses and rewards in alcohol use disorder: The effect of working memory load. Psychology of Addictive Behaviors, 32(2), 197–204. https://doi.org/10.1037/adb0000341
Brewton, H. W., Robinson, S. L., & Thiele, T. E. (2023). Astrocyte expression in the extended amygdala of C57BL/6J mice is sex-dependently affected by chronic intermittent and binge-like ethanol exposure. Alcohol, 108, 55–64. https://doi.org/10.1016/j.alcohol.2022.12.001
Coatl-Cuaya, H., Tendilla-Beltrán, H., de Jesús-Vásquez, L. M., Garcés-Ramírez, L., Gómez-Villalobos, M. de J., & Flores, G. (2022). Losartan enhances cognitive and structural neuroplasticity impairments in spontaneously hypertensive rats. Journal of Chemical Neuroanatomy, 120, 102061. https://doi.org/10.1016/j.jchemneu.2021.102061
Crofton, E. J., Zhu, M., Curtis, K. N., Nolan, G. W., O’Buckley, T. K., Morrow, A. L., & Herman, M. A. (2022). Medial prefrontal cortex-basolateral amygdala circuit dysfunction in chronic alcohol-exposed male rats. Neuropharmacology, 205, 108912. https://doi.org/10.1016/j.neuropharm.2021.108912
Dahchour, A., & De Witte, P. (2003). Excitatory and inhibitory amino acid changes during repeated episodes of ethanol withdrawal: an in vivo microdialysis study. European Journal of Pharmacology, 459(2–3), 171–178. https://doi.org/10.1016/S0014-2999(02)02851-0
Davies, M. (2003). The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. Journal of Psychiatry & Neuroscience, 28(4), 263–274.
Daviet, R., Aydogan, G., Jagannathan, K., Spilka, N., Koellinger, P. D., Kranzler, H. R., Nave, G., & Wetherill, R. R. (2022). Associations between alcohol consumption and gray and white matter volumes in the UK Biobank. Nature Communications, 13(1), 1175. https://doi.org/10.1038/s41467-022-28735-5
den Hartog, C. R., Gilstrap, M., Eaton, B., Lench, D. H., Mulholland, P. J., Homanics, G. E., & Woodward, J. J. (2017). Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors. Frontiers in Neuroscience, 11, 84. https://doi.org/10.3389/fnins.2017.00084
Díaz, A., Treviño, S., Guevara, J., Muñoz-Arenas, G., Brambila, E., Espinosa, B., Moreno-Rodríguez, A., Lopez-Lopez, G., Peña-Rosas, U., Venegas, B., Handal-Silva, A., Morán-Perales, J. L., Flores, G., & Aguilar-Alonso, P. (2016). Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats. Oxidative Medicine and Cellular Longevity, 2016, 8725354. https://doi.org/10.1155/2016/8725354
Donaire, R., Conrad, S. E., Thompson, J. B., Papini, M. R., & Torres, C. (2018). Augmented voluntary consumption of ethanol induced by reward downshift increases locomotor activity of male Wistar rats in the elevated plus maze. Behavioural Processes, 150, 59–65. https://doi.org/10.1016/j.beproc.2018.02.013
Eisenhardt, M., Hansson, A. C., Spanagel, R., & Bilbao, A. (2015). Chronic Intermittent Ethanol Exposure in Mice Leads to an Up-Regulation of CRH/CRHR1 Signaling. Alcoholism: Clinical and Experimental Research, 39(4), 752–762. https://doi.org/10.1111/acer.12686
Fadda, F., Cocco, S., Stancampiano, R., & Rossetti, Z. L. (1999). Long-term voluntary ethanol consumption affects neither spatial nor passive avoidance learning, nor hippocampal acetylcholine release in alcohol-preferring rats. Behavioural Brain Research, 103(1), 71–76. https://doi.org/10.1016/s0166-4328(99)00025-x
Fama, R., Le Berre, A.-P., Sassoon, S. A., Zahr, N. M., Pohl, K. M., Pfefferbaum, A., & Sullivan, E. V. (2021). Memory impairment in alcohol use disorder is associated with regional frontal brain volumes. Drug and Alcohol Dependence, 228, 109058. https://doi.org/10.1016/j.drugalcdep.2021.109058
Ferreira, S. E. M. M., Soares, L. M., Lira, C. R., Yokoyama, T. S., Engi, S. A., Cruz, F. C., & Leão, R. M. (2021). Ethanol-induced locomotor sensitization: Neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neuroscience Letters, 749, 135745. https://doi.org/10.1016/j.neulet.2021.135745
Flores, G., Alquicer, G., Silva-Gómez, A. B., Zaldivar, G., Stewart, J., Quirion, R., & Srivastava, L. K. (2005). Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience, 133(2), 463–470. https://doi.org/10.1016/j.neuroscience.2005.02.021
García‐Dolores, F., Hernández‐Torres, M. A., Fuentes‐Medel, E., Díaz, A., Guevara, J., Baltazar‐Gaytan, E., Aguilar‐Hernández, L., Nicolini, H., Morales‐Medina, J. C., González‐Cano, S. I., de la Cruz, F., Gil‐Velazco, A., Tendilla‐Beltrán, H., & Flores, G. (2025). Atrophy and Higher Levels of Inflammatory‐Related Markers in the Posterior Cerebellar Lobe Cortex in Chronic Alcohol Use Disorder: A Cross‐Sectional Study. Neuropathology and Applied Neurobiology, 51(2), e70011. https://doi.org/10.1111/nan.70011
Gass, J. T., & Olive, M. F. (2012). Neurochemical and Neurostructural Plasticity in Alcoholism. ACS Chemical Neuroscience, 3(7), 494–504. https://doi.org/10.1021/cn300013p
George, F., & Chu, N.-S. (1984). Effects of ethanol on Purkinje cells recorded from cerebellar slices. Alcohol, 1(5), 353–358. https://doi.org/10.1016/0741-8329(84)90002-8
Gibb, R., & Kolb, B. (1998). A method for vibratome sectioning of Golgi–Cox stained whole rat brain. Journal of Neuroscience Methods, 79(1), 1–4. https://doi.org/10.1016/S0165-0270(97)00163-5
Han, J., Wang, G., Liu, M., Chai, R., Guo, J., Zhang, F., Lu, C., Zhang, Y., Wang, H., & Zhang, R. (2020). Effects of quetiapine on behavioral changes and expression of myelin proteins in a chronic alcohol dependence rat model. Behavioural Brain Research, 385, 112561. https://doi.org/10.1016/j.bbr.2020.112561
Hoffman, P. L., & Tabakoff, B. (1994). The role of the NMDA receptor in ethanol withdrawal. In B. Jansson, H. Jörnvall, U. Rydberg, L. Terenius, & B. L. Vallee (Eds.), Toward a molecular basis of alcohol use and abuse (pp. 61–70). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7330-7_7
Hughes, B. A., Crofton, E. J., O’Buckley, T. K., Herman, M. A., & Morrow, A. L. (2020). Chronic ethanol exposure alters prelimbic prefrontal cortical Fast-Spiking and Martinotti interneuron function with differential sex specificity in rat brain. Neuropharmacology, 162, 107805. https://doi.org/10.1016/j.neuropharm.2019.107805
Jin, L., Zhang, Z., Pan, P., Zhao, Y., Zhou, M., Liu, L., Zhai, Y., Wang, H., Xu, L., Mei, D., Zhang, H., Yang, Y., Hua, J., Zhang, X., & Zhang, L. (2023). Low-dose ethanol consumption inhibits neutrophil extracellular traps formation to alleviate rheumatoid arthritis. Communications Biology, 6(1), 1088. https://doi.org/10.1038/s42003-023-05473-y
Joffe, M., Ferranti, A., Winder, D., & Conn, P. J. (2021). Ethanol-Induced Adaptations to Inhibitory Microcircuits in the Mouse Prefrontal Cortex. Biological Psychiatry, 89(9), S121. https://doi.org/10.1016/j.biopsych.2021.02.313
Jury, N. J., Pollack, G. A., Ward, M. J., Bezek, J. L., Ng, A. J., Pinard, C. R., Bergstrom, H. C., & Holmes, A. (2017). Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior. Alcoholism: Clinical and Experimental Research, 41(7), 1298–1308. https://doi.org/10.1111/acer.13422
Kroener, S., Mulholland, P. J., New, N. N., Gass, J. T., Becker, H. C., & Chandler, L. J. (2012). Chronic Alcohol Exposure Alters Behavioral and Synaptic Plasticity of the Rodent Prefrontal Cortex. PLoS ONE, 7(5), e37541. https://doi.org/10.1371/journal.pone.0037541
LaFever, B. J., Kawasawa, Y. I., Ito, A., & Imamura, F. (2022). Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons. Brain, Behavior, & Immunity - Health, 21, 100451. https://doi.org/10.1016/j.bbih.2022.100451
Lawson, K., Scarlata, M. J., Cho, W. C., Mangan, C., Petersen, D., Thompson, H. M., Ehnstrom, S., Mousley, A. L., Bezek, J. L., & Bergstrom, H. C. (2022). Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology, 211, 109048. https://doi.org/10.1016/j.neuropharm.2022.109048
Lewandowska, E., Kujawa, M., & Jedrzejewska, A. (1994). Ethanol-induced changes in Purkinje cells of rat cerebellum. II. The ultrastructural changes after chronic ethanol intoxication. (Morphometric evaluation). Folia Neuropathologica, 32(1), 61–64.
Llinás, R. R., & Sugimori, M. (1992). The Electrophysiology of the Cerebellar Purkinje Cell Revisited. In The Cerebellum Revisited (pp. 167–181). Springer US. https://doi.org/10.1007/978-1-4612-2840-0_8
Logge, W. B., Morley, K. C., Haber, P. S., & Baillie, A. J. (2023). Impaired Decision-Making and Skin Conductance Responses Are Associated with Reward and Punishment Sensitivity in Individuals with Severe Alcohol Use Disorder. Neuropsychobiology, 82(2), 117–129. https://doi.org/10.1159/000529156
Lograno, D. E., Matteo, F., Trabucchi, M., Govoni, S., Cagiano, R., Lacomba, C., & Cuomo, V. (1993). Effects of chronic ethanol intake at a low dose on the rat brain dopaminergic system. Alcohol, 10(1), 45–49. https://doi.org/10.1016/0741-8329(93)90052-p
Luo, J. (2015). Effects of Ethanol on the Cerebellum: Advances and Prospects. The Cerebellum, 14(4), 383–385. https://doi.org/10.1007/s12311-015-0674-8
Martinez, M., Milton, F. A., Pinheiro, P. F. F., Almeida-Francia, C. C. D., Cagnon-Quitete, V. H. A., Tirapelli, L. F., Padovani, C. R., Chuffa, L. G. A., & Martinez, F. E. (2016). Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium. Alcohol, 52, 55–61. https://doi.org/10.1016/j.alcohol.2016.02.002
McElroy, B. D., Li, C., McCloskey, N. S., & Kirby, L. G. (2023). Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiology & Behavior, 271, 114322. https://doi.org/10.1016/j.physbeh.2023.114322
McGregor, M., Richer, K., Ananth, M., & Thanos, P. K. (2020). The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain and Behavior, 10(8), e01646. https://doi.org/10.1002/brb3.1646
Mechtcheriakov, S., Brenneis, C., Egger, K., Koppelstaetter, F., Schocke, M., & Marksteiner, J. (2007). A widespread distinct pattern of cerebral atrophy in patients with alcohol addiction revealed by voxel-based morphometry. Journal of Neurology, Neurosurgery & Psychiatry, 78(6), 610–614. https://doi.org/10.1136/jnnp.2006.095869
Mendoza, E. T., Villada, M., & Velásquez-Martínez, M. C. (2024). Voluntary Ethanol Intake and Anxiety Behavior in Wistar-Uis Rats. International Journal of Psychological Research, 17(1), 63–72. https://doi.org/10.21500/20112084.7060
Mira, R. G., Tapia-Rojas, C., Pérez, M. J., Jara, C., Vergara, E. H., Quintanilla, R. A., & Cerpa, W. (2019). Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence, 205, 107628. https://doi.org/10.1016/j.drugalcdep.2019.107628
Mitoma, H., Manto, M., & Shaikh, A. G. (2021). Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. International Journal of Environmental Research and Public Health, 18(16), 8678. https://doi.org/10.3390/ijerph18168678
Morales-Medina, J. C., Mejorada, A., Romero-Curiel, A., Aguilar-Alonso, P., León-Chávez, B. A., Gamboa, C., Quirion, R., & Flores, G. (2008). Neonatal administration of N-omega-nitro-l-arginine induces permanent decrease in NO levels and hyperresponsiveness to locomotor activity by d-amphetamine in postpubertal rats. Neuropharmacology, 55(8), 1313–1320. https://doi.org/10.1016/j.neuropharm.2008.08.019
Mormede, P. (2004). High Ethanol Preferring Rats Fail to Show Dependence Following Short- or Long-Term Ethanol Exposure. Alcohol and Alcoholism, 39(3), 183–189. https://doi.org/10.1093/alcalc/agh037
Munshi, S., Albrechet-Souza, L., Dos-Santos, R. C., Stelly, C. E., Secci, M. E., Gilpin, N. W., & Tasker, J. G. (2023). Acute Ethanol Modulates Synaptic Inhibition in the Basolateral Amygdala via Rapid NLRP3 Inflammasome Activation and Regulates Anxiety-Like Behavior in Rats. The Journal of Neuroscience, 43(47), 7902–7912. https://doi.org/10.1523/JNEUROSCI.1744-22.2023
Northup, L. R. (1976). Additive effects of ethanol and purkinje cell loss in the production of ataxia in mice. Psychopharmacology, 48(2), 189–192. https://doi.org/10.1007/BF00423259
Paxinos, G., & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates (4th edn). Academic Press.
Peng, W., Wang, B., Jiang, W., Wan, Y., Li, R., & Jin, S. (2024). Effects of voluntary chronic intermittent access to ethanol on the behavioral performance in adult C57BL/6J mice. Behavioural Brain Research, 474, 115183. https://doi.org/10.1016/j.bbr.2024.115183
Pirino, B. E., Martin, C. R., Carpenter, B. A., Curtis, G. R., Curran‐Alfaro, C. M., Samels, S. B., Barker, J. M., Karkhanis, A. N., & Barson, J. R. (2022). Sex‐related differences in pattern of ethanol drinking under the intermittent‐access model and its impact on exploratory and anxiety‐like behavior in Long‐Evans rats. Alcoholism: Clinical and Experimental Research, 46(7), 1282–1293. https://doi.org/10.1111/acer.14853
Pisula, W., & Siegel, J. (2005). Exploratory Behavior as a Function of Environmental Novelty and Complexity in Male and Female Rats. Psychological Reports, 97(2), 631–638. https://doi.org/10.2466/pr0.97.2.631-638
Pradhan, J., Noakes, P. G., & Bellingham, M. C. (2019). The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 13, 368. https://doi.org/10.3389/fncel.2019.00368
Puzziferri, I., Signorile, A., Guerrieri, F., Papa, S., Cuomo, V., & Steardo, L. (2000). Chronic low dose ethanol intake: biochemical characterization of liver mitochondria in rats. Life Sciences, 66(6), 477–484. https://doi.org/10.1016/s0024-3205(99)00617-7
Ramachandran, B., Ahmed, S., Zafar, N., & Dean, C. (2015). Ethanol inhibits long‐term potentiation in hippocampal CA1 neurons, irrespective of lamina and stimulus strength, through neurosteroidogenesis. Hippocampus, 25(1), 106–118. https://doi.org/10.1002/hipo.22356
Rao, R., & Topiwala, A. (2020). Alcohol use disorders and the brain. Addiction, 115(8), 1580–1589. https://doi.org/10.1111/add.15023
Reyes-Lizaola, S., Luna-Zarate, U., Tendilla-Beltrán, H., Morales-Medina, J. C., & Flores, G. (2024). Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 129, 110876. https://doi.org/10.1016/j.pnpbp.2023.110876
Roberto, M., Gilpin, N. W., & Siggins, G. R. (2012). The Central Amygdala and Alcohol: Role of -Aminobutyric Acid, Glutamate, and Neuropeptides. Cold Spring Harbor Perspectives in Medicine, 2(12), a012195–a012195. https://doi.org/10.1101/cshperspect.a012195
Roerecke, M., & Rehm, J. (2014). Cause-specific mortality risk in alcohol use disorder treatment patients: a systematic review and meta-analysis. International Journal of Epidemiology, 43(3), 906–919. https://doi.org/10.1093/ije/dyu018
Rossetto, I. M. U., Cagnon, V. H. A., Kido, L. A., Lizarte Neto, F. S., Tirapelli, L. F., Tirapelli, D. P. da C., de Almeida Chuffa, L. G., Martinez, F. E., & Martinez, M. (2021). Caffeine consumption attenuates ethanol-induced inflammation through the regulation of adenosinergic receptors in the UChB rats cerebellum. Toxicology Research, 10(4), 835–849. https://doi.org/10.1093/toxres/tfab067
Rossi, D.J., Richardson, B.D. (2018). The cerebellar GABAAR system as a potential target for treating alcohol use disorder. In The Neuropharmacology of Alcohol (pp. 113–156). Springer. https://doi.org/10.1007/164_2018_109
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(4), 387–406.
Silva-Gómez, A. B., Rojas, D., Juárez, I., & Flores, G. (2003). Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Research, 983(1–2), 128–136. https://doi.org/10.1016/S0006-8993(03)03042-7
Sullivan, E. V., & Pfefferbaum, A. (2023). Alcohol use disorder: Neuroimaging evidence for accelerated aging of brain morphology and hypothesized contribution to age-related dementia. Alcohol, 107, 44–55. https://doi.org/10.1016/j.alcohol.2022.06.002
Tamakoshi, K., Hayao, K., & Takahashi, H. (2020). Early Exercise after Intracerebral Hemorrhage Inhibits Inflammation and Promotes Neuroprotection in the Sensorimotor Cortex in Rats. Neuroscience, 438, 86–99. https://doi.org/10.1016/j.neuroscience.2020.05.003
Tavares, M. A., Paula-Barbosa, M. M., & Gray, E. G. (1983). A morphometric Golgi analysis of the Purkinje cell dendritic tree after long-term alcohol consumption in the adult rat. Journal of Neurocytology, 12(6), 939–948. https://doi.org/10.1007/BF01153343
Tendilla-Beltrán, H., Antonio Vázquez-Roque, R., Judith Vázquez-Hernández, A., Garcés-Ramírez, L., & Flores, G. (2019). Exploring the Dendritic Spine Pathology in a Schizophrenia-related Neurodevelopmental Animal Model. Neuroscience, 396, 36–45. https://doi.org/10.1016/j.neuroscience.2018.11.006
Tendilla-Beltrán, H., Arroyo-García, L. E., Diaz, A., Camacho-Abrego, I., de la Cruz, F., Rodríguez-Moreno, A., & Flores, G. (2016). The effects of amphetamine exposure on juvenile rats on the neuronal morphology of the limbic system at prepubertal, pubertal and postpubertal ages. Journal of Chemical Neuroanatomy, 77, 68–77. https://doi.org/10.1016/j.jchemneu.2016.05.004
Tendilla-Beltrán, H., Meneses-Prado, S., Vázquez-Roque, R. A., Tapia-Rodríguez, M., Vázquez-Hernández, A. J., Coatl-Cuaya, H., Martín-Hernández, D., MacDowell, K. S., Garcés-Ramírez, L., Leza, J. C., & Flores, G. (2019). Risperidone Ameliorates Prefrontal Cortex Neural Atrophy and Oxidative/Nitrosative Stress in Brain and Peripheral Blood of Rats with Neonatal Ventral Hippocampus Lesion. The Journal of Neuroscience, 39(43), 8584–8599. https://doi.org/10.1523/JNEUROSCI.1249-19.2019
Tizabi, Y., Getachew, B., Ferguson, C. L., Csoka, A. B., Thompson, K. M., Gomez-Paz, A., Ruda-Kucerova, J., & Taylor, R. E. (2018). Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotoxicity Research, 34(4), 860–869. https://doi.org/10.1007/s12640-017-9859-x
Tsai, G. E., Ragan, P., Chang, R., Chen, S., Linnoila, V. M., & Coyle, J. T. (1998). Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal. The American Journal of Psychiatry, 155(6), 726–732. https://doi.org/10.1176/ajp.155.6.726
Varodayan, F. P., Bajo, M., Soni, N., Luu, G., Madamba, S. G., Schweitzer, P., & Roberto, M. (2017). Chronic alcohol exposure disrupts CB 1 regulation of GABAergic transmission in the rat basolateral amygdala. Addiction Biology, 22(3), 766–778. https://doi.org/10.1111/adb.12369
Vengeliene, V., Bilbao, A., Molander, A., & Spanagel, R. (2008). Neuropharmacology of alcohol addiction. British Journal of Pharmacology, 154(2), 299–315. https://doi.org/10.1038/bjp.2008.30
Vetter-O’Hagen, C., Varlinskaya, E., & Spear, L. (2009). Sex Differences in Ethanol Intake and Sensitivity to Aversive Effects during Adolescence and Adulthood. Alcohol and Alcoholism, 44(6), 547–554. https://doi.org/10.1093/alcalc/agp048
Whishaw, I. Q., Gharbawie, O. A., Clark, B. J., & Lehmann, H. (2006). The exploratory behavior of rats in an open environment optimizes security. Behavioural Brain Research, 171(2), 230–239. https://doi.org/10.1016/j.bbr.2006.03.037
Xu, H., Li, H., Liu, D., Wen, W., Xu, M., Frank, J. A., Chen, J., Zhu, H., Grahame, N. J., & Luo, J. (2021). Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice. Frontiers in Pharmacology, 12, 614396. https://doi.org/10.3389/fphar.2021.614396
Yang, Y., & Wang, J.-Z. (2017). From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Frontiers in Neural Circuits, 11, 86. https://doi.org/10.3389/fncir.2017.00086
Yizhar, O., & Klavir, O. (2018). Reciprocal amygdala–prefrontal interactions in learning. Current Opinion in Neurobiology, 52, 149–155. https://doi.org/10.1016/j.conb.2018.06.006
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2026 Claudia Rebeca Mendoza, Leonardo Aguilar-Hernández, David J. Apam-Castillejos, Andrea Judith Vázquez-Hernández, Alfonso Díaz, Hiram Tendilla-Beltrán, Gonzalo Flores, Fidel de la Cruz-López

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.