Expression of ATOH1 gene and activated signaling pathways for the neurogenesis of cerebellar granule cells: A review
DOI:
https://doi.org/10.31117/neuroscirn.v5i2.125Keywords:
ATOH1 gene, Cerebellum, Granule cell neurogenesis, Medulloblastoma, Sonic hedgehogAbstract
Granule cells in the cerebellum are derived by the proliferation of cells from the rhombic lips of the metencephalon. Atonal homolog 1 (ATOH1), a protein encoding proneural gene, plays an essential role in the neurogenesis of the cerebellar granule cells. It encodes the basic helix loop helix (bHLH) family of transcription factor ATOH1. Expression of the ATOH1 gene in the rhombic lips of the metencephalon results in specification and proliferation of the granule neuron progenitors. Four major signaling pathways- Sonic hedgehog (Shh), Notch, Wingless related integration site (Wnt) and Bone morphogenetic protein (BMP) play an essential role in the regulation of the ATOH1 gene. Shh, Notch and Wnt signalings induce expression of the ATOH1 gene for the proliferation of the granule neuron progenitors whereas BMP signaling is involved in the differentiation of the granule neuron progenitors into the granule cells. Aberrant expression and mutation of the ATOH1 gene result in cerebellar medulloblastoma, the phenotype of trembling gait, cerebellar ataxia and hearing loss.
References
Amore, G., Spoto, G., Ieni, A., Vetri, L., Quatrosi, G., Di Rosa, G., & Nicotera, A. G. (2021). A focus on the cerebellum: from embryogenesis to an age-related clinical perspective. Frontiers in Systems Neuroscience, 15. https://doi.org/10.3389/FNSYS.2021.646052
Angley, C., Kumar, M., Dinsio, K. J., Hall, A. K., & Siegel, R. E. (2003). Signaling by bone morphogenetic proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. Journal of Neuroscience, 23(1), 260–268. https://doi.org/10.1523/jneurosci.23-01-00260.2003
ATOH1 atonal bHLH transcription factor 1 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved February 15, 2021, from https://www.ncbi.nlm.nih.gov/gene/474
Belzunce, I., Belmonte-Mateos, C., & Pujades, C. (2020). The interplay of atoh1 genes in the lower rhombic lip during hindbrain morphogenesis. PLoS ONE, 15(2), e0228225. https://doi.org/10.1371/journal.pone.0228225
Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews Neuroscience, 3(7), 517–530. https://doi.org/10.1038/nrn874
Blaess, S., Graus-Porta, D., Belvindrah, R., Radakovits, R., Pons, S., Littlewood-Evans, A., Senften, M., Guo, H., Li, Y., Miner, J. H., Reichardt, L. F., & Müller, U. (2004). β1-Integrins are critical for cerebellar granule cell precursor proliferation. Journal of Neuroscience, 24(13), 3402–3412. https://doi.org/10.1523/JNEUROSCI.5241-03.2004
Carballo, G. B., Honorato, J. R., De Lopes, G. P. F., & Spohr, T. C. L. D. S. E. (2018). A highlight on Sonic hedgehog pathway. Cell Communication and Signaling, 16(1), 1–15. https://doi.org/10.1186/s12964-018-0220-7
Castellino, R. C., & Kenney, A. M. (2019). Atoh1/MATH1 adds up to ciliogenesis for transducing shh signaling in the cerebellum. Developmental Cell, 48(2), 129–130. https://doi.org/10.1016/J.DEVCEL.2019.01.012
Chang, C. H., Zanini, M., Shirvani, H., Cheng, J. S., Yu, H., Feng, C. H., Mercier, A. L., Hung, S. Y., Forget, A., Wang, C. H., Cigna, S. M., Lu, I. L., Chen, W. Y., Leboucher, S., Wang, W. J., Ruat, M., Spassky, N., Tsai, J. W., & Ayrault, O. (2019). Atoh1 controls primary cilia formation to allow for shh-triggered granule neuron progenitor proliferation. Developmental Cell, 48(2), 184-199.e5. https://doi.org/10.1016/J.DEVCEL.2018.12.017
Corrales, J. M. D., Blaess, S., Mahoney, E. M., & Joyner, A. L. (2006). The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development, 133(9), 1811–1821. https://doi.org/10.1242/dev.02351
Corrales, J. M. D., Rocco, G. L., Blaess, S., Guo, Q., & Joyner, A. L. (2004). Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development, 131(22), 5581–5590. https://doi.org/10.1242/dev.01438
De Luca, A., Cerrato, V., Fucà, E., Parmigiani, E., Buffo, A., & Leto, K. (2016). Sonic hedgehog patterning during cerebellar development. Cellular and Molecular Life Sciences, 73(2), 291–303. https://doi.org/10.1007/s00018-015-2065-1
Díaz, E., Ge, Y., Yang, Y. H., Loh, K. C., Serafini, T. A., Okazaki, Y., Hayashizaki, Y., Speed, T. P., Ngai, J., & Scheiffele, P. (2002). Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron, 36(3), 417–434. https://doi.org/10.1016/S0896-6273(02)01016-4
Englund, C., Kowalczyk, T., Daza, R. A. M., Dagan, A., Lau, C., Rose, M. F., & Hevner, R. F. (2006). Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. Journal of Neuroscience, 26(36), 9184–9195. https://doi.org/10.1523/JNEUROSCI.1610-06.2006
Fink, A. J., Englund, C., Daza, R. A. M., Pham, D., Lau, C., Nivison, M., Kowalczyk, T., & Hevner, R. F. (2006). Development of the deep cerebellar nuclei: Transcription factors and cell migration from the rhombic lip. Journal of Neuroscience, 26(11), 3066–3076. https://doi.org/10.1523/JNEUROSCI.5203-05.2006
Fogarty, M. P., Emmenegger, B. A., Grasfeder, L. L., Oliver, T. G., & Wechsler-Reya, R. J. (2007). Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2973–2978. https://doi.org/10.1073/pnas.0605770104
Gazit, R., Krizhanovsky, V., & Ben-Arie, N. (2004). Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development, 131(4), 903–913. https://doi.org/10.1242/dev.00982
Grausam, K. B., Dooyema, S. D. R., Bihannic, L., Premathilake, H., Morrissy, A. S., Forget, A., Schaefer, A. M., Gundelach, J. H., Macura, S., Maher, D. M., Wang, X., Heglin, A. H., Ge, X., Zeng, E., Puget, S., Chandrasekar, I., Surendran, K., Bram, R. J., Schuller, U., … Zhao, H. (2017). ATOH1 promotes leptomeningeal dissemination and metastasis of sonic hedgehog subgroup medulloblastomas. Cancer Research, 77(14), 3766–3777. https://doi.org/10.1158/0008-5472.CAN-16-1836
Grimmer, M. R., & Weiss, W. A. (2008). BMPs oppose Math1 in cerebellar development and in medulloblastoma. Genes & Development, 22, 693-699https://doi.org/10.1101/gad.1657808
Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y. V., Fukuda, A., Fuse, T., Matsuo, N., Sone, M., Watanabe, M., Bito, H., Terashima, T., Wright, C. V. E., Kawaguchi, Y., Nakao, K., & Nabeshima, Y. I. (2005). Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron, 47(2), 201–213. https://doi.org/10.1016/j.neuron.2005.06.007
Huang, X., Liu, J., Ketova, T., Fleming, J. T., Grover, V. K., Cooper, M. K., Litingtung, Y., & Chiang, C. (2010). Transventricular delivery of sonic hedgehog is essential to cerebellar ventricular zone development. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8422–8427. https://doi.org/10.1073/pnas.0911838107
Jones, S. (2004). An overview of the basic helix-loop-helix proteins. Genome Biology, 5(6), 226. https://doi.org/10.1186/gb-2004-5-6-226
Klisch, T. J., Xi, Y., Flora, A., Wang, L., Li, W., & Zoghbi, H. Y. (2011). In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proceedings of the National Academy of Sciences of the United States of America, 108(8), 3288–3293. https://doi.org/10.1073/pnas.1100230108
Komine, O., Nagaoka, M., Watase, K., Gutmann, D. H., Tanigaki, K., Honjo, T., Radtke, F., Saito, T., Chiba, S., & Tanaka, K. (2007). The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Developmental Biology, 311(1), 238–250. https://doi.org/10.1016/j.ydbio.2007.08.042
Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68–75). https://doi.org/10.4161/org.4.2.5851
Krizhanovsky, V., & Ben-Arie, N. (2006). A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mechanisms of Development, 123(1), 67–75. https://doi.org/10.1016/j.mod.2005.09.005
Lake, R. J., Tsai, P. F., Choi, I., Won, K. J., & Fan, H. Y. (2014). RBPJ, the major transcriptional effector of notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genetics, 10(3), e1004204. https://doi.org/10.1371/journal.pgen.1004204
Leto, K., Arancillo, M., Becker, E. B. E., Buffo, A., Chiang, C., Ding, B., Dobyns, W. B., Dusart, I., Haldipur, P., Hatten, M. E., Hoshino, M., Joyner, A. L., Kano, M., Kilpatrick, D. L., Koibuchi, N., Marino, S., Martinez, S., Millen, K. J., Millner, T. O., … Hawkes, R. (2016). Consensus paper: cerebellar development. Cerebellum, 15(6), 789–828. https://doi.org/10.1007/S12311-015-0724-2
Lewis, P. M., Gritli-Linde, A., Smeyne, R., Kottmann, A., & McMahon, A. P. (2004). Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Developmental Biology, 270(2), 393–410. https://doi.org/10.1016/j.ydbio.2004.03.007
Lin, Y., Chen, L., Lin, C., Luo, Y., Tsai, R. Y. L., & Wang, F. (2009). Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Developmental Biology, 329(1), 44–54. https://doi.org/10.1016/j.ydbio.2009.02.011
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/β-Catenin signaling: components, mechanisms, and diseases. In Developmental Cell (Vol. 17, Issue 1, pp. 9–26). NIH Public Access. https://doi.org/10.1016/j.devcel.2009.06.016
Machold, R., & Fishell, G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron, 48(1), 17–24. https://doi.org/10.1016/j.neuron.2005.08.028
Machold, R. P., Kittell, D. J., & Fishell, G. J. (2007). Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. Neural Development, 2(1), 5. https://doi.org/10.1186/1749-8104-2-5
Marzban, H., Del Bigio, M. R., Alizadeh, J., Ghavami, S., Zachariah, R. M., & Rastegar, M. (2015). Cellular commitment in the developing cerebellum. Frontiers in Cellular Neuroscience, 8(JAN), 1–26. https://doi.org/10.3389/FNCEL.2014.00450
Miyashita, S., Owa, T., Seto, Y., Yamashita, M., Aida, S., Sone, M., Ichijo, K., Nishioka, T., Kaibuchi, K., Kawaguchi, Y., Taya, S., & Hoshino, M. (2021). Cyclin D1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1. The EMBO Journal, 40(14), e105712. https://doi.org/10.15252/EMBJ.2020105712
Nam, Y., Aster, J. C., & Blacklow, S. C. (2002). Notch signaling as a therapeutic target. Current Opinion in Chemical Biology, 6(4), 501–509. https://doi.org/10.1016/S1367-5931(02)00346-0
Owa, T., Taya, S., Miyashita, S., Yamashita, M., Adachi, T., Yamada, K., Yokoyama, M., Aida, S., Nishioka, T., Inoue, Y. U., Goitsuka, R., Nakamura, T., Inoue, T., Kaibuchi, K., & Hoshino, M. (2018). Meis1 coordinates cerebellar granule cell development by regulating pax6 transcription, BMP signaling and atoh1 degradation. Journal of Neuroscience, 38(5), 1277–1294. https://doi.org/10.1523/JNEUROSCI.1545-17.2017
Puelles, L., & Ferran, J. L. (2012). Concept of neural genoarchitecture and its genomic fundament. Frontiers in Neuroanatomy, 6(NOV), 1–8. https://doi.org/10.3389/fnana.2012.00047
Qin, L., Wine-Lee, L., Ahn, K. J., & Crenshaw, E. B. (2006). Genetic analyses demonstrate that bone morphogenetic protein signaling is required for embryonic cerebellar development. Journal of Neuroscience, 26(7), 1896–1905. https://doi.org/10.1523/JNEUROSCI.3202-05.2006
Rahimi-Balaei, M., Bergen, H., Kong, J., & Marzban, H. (2018). Neuronal migration during development of the cerebellum. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/FNCEL.2018.00484
Rao, T. P., & Kühl, M. (2010). An updated overview on wnt signaling pathways: A prelude for more. In Circulation Research (Vol. 106, Issue 12, pp. 1798–1806). Lippincott Williams & Wilkins. https://doi.org/10.1161/CIRCRESAHA.110.219840
Rios, I., Alvarez-Rodríguez, R., Martí, E., & Pons, S. (2004). Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development, 131(13), 3159–3168. https://doi.org/10.1242/dev.01188
Schuurmans, C., Armant, O., Nieto, M., Stenman, J. M., Britz, O., Klenin, N., Brown, C., Langevin, L.-M., Seibt, J., Tang, H., Cunningham, J. M., Dyck, R., Walsh, C., Campbell, K., Polleux, F., & Guillemot, F. (2004). Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. The EMBO Journal, 23(14), 2892–2902. https://doi.org/10.1038/sj.emboj.7600278
Seto, Y., Nakatani, T., Masuyama, N., Taya, S., Kumai, M., Minaki, Y., Hamaguchi, A., Inoue, Y. U., Inoue, T., Miyashita, S., Fujiyama, T., Yamada, M., Chapman, H., Campbell, K., Magnuson, M. A., Wright, C. V., Kawaguchi, Y., Ikenaka, K., Takebayashi, H., … Hoshino, M. (2014). Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature Communications, 5(1), 1–13. https://doi.org/10.1038/ncomms4337
Sheykholeslami, K., Thimmappa, V., Nava, C., Bai, X., Yu, H., Zheng, T., Zhang, Z., Li, S. L., Liu, S., & Zheng, Q. Y. (2013). A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. PLoS ONE, 8(11), e79791. https://doi.org/10.1371/journal.pone.0079791
Subkhankulova, T., Zhang, X., Leung, C., & Marino, S. (2010). Bmi1 directly represses p21Waf1/Cip1 in Shh-induced proliferation of cerebellar granule cell progenitors. Molecular and Cellular Neuroscience, 45(2), 151–162. https://doi.org/10.1016/j.mcn.2010.06.006
Sudarov, A., & Joyner, A. L. (2007). Cerebellum morphogenesis: The foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Development, 2(1), 26. https://doi.org/10.1186/1749-8104-2-26
Tam, W. Y., Wang, X., Cheng, A. S. K., & Cheung, K. K. (2021). In Search of Molecular Markers for Cerebellar Neurons. International Journal of Molecular Sciences, 22(4), 1–11. https://doi.org/10.3390/IJMS22041850
Toledo, E. M., Colombres, M., & Inestrosa, N. C. (2008). Wnt signaling in neuroprotection and stem cell differentiation. Progress in Neurobiology, 86(3), 281–296. https://doi.org/10.1016/j.pneurobio.2008.08.001
Uziel, T., Zindy, F., Xie, S., Lee, Y., Forget, A., Magdaleno, S., Rehg, J. E., Calabrese, C., Solecki, D., Eberhart, C. G., Sherr, S. E., Plimmer, S., Clifford, S. C., Hatten, M. E., McKinnon, P. J., Gilbertson, R. J., Curran, T., Sherr, C. J., & Roussel, M. F. (2005). The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes and Development, 19(22), 2656–2667. https://doi.org/10.1101/gad.1368605
Wang, L., & Liu, Y. (2019). Signaling pathways in cerebellar granule cells development. American Journal of Stem Cells, 8(1), 1–6. http://www.ncbi.nlm.nih.gov/pubmed/31139492
Wang, V. Y., Rose, M. F., & Zoghbi, H. Y. (2005). Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron, 48(1), 31–43. https://doi.org/10.1016/j.neuron.2005.08.024
Wefers, A. K., Haberlandt, C., Surchev, l., Steinhäuser, C., Jabs, R., & Schilling, K. (2018). Migration of interneuron precursors in the nascent cerebellar cortex. Cerebellum, 17(1), 62–71.
https://doi.org/10.1007/S12311-017-0900-7
Wingate, R. (2005). Math-Map(ic)s. Neuron, 48(1), 1–4. Elsevier. https://doi.org/10.1016/j.neuron.2005.09.012
Wingate, R. J. T. (2001). The rhombic lip and early cerebellar development. In Current Opinion in Neurobiology (Vol. 11, Issue 1, pp. 82–88). Elsevier Ltd. https://doi.org/10.1016/S0959-4388(00)00177-X
Xie, W. R., Jen, H. I., Seymour, M. L., Yeh, S. Y., Pereira, F. A., Groves, A. K., Klisch, T. J., & Zoghbi, H. Y. (2017). An Atoh1-S193A phospho-mutant allele causes hearing deficits and motor impairment. Journal of Neuroscience, 37(36), 8583–8594. https://doi.org/10.1523/JNEUROSCI.0295-17.2017
Yamada, M., Seto, Y., Taya, S., Owa, T., Inoue, Y. U., Inoue, T., Kawaguchi, Y., Nabeshima, Y. I., & Hoshino, M. (2014). Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. Journal of Neuroscience, 34(14), 4786–4800. https://doi.org/10.1523/JNEUROSCI.2722-13.2014
Zhang, T., Liu, T., Mora, N., Guegan, J., Bertrand, M., Contreras, X., Hansen, A. H., Streicher, C., Anderle, M., Danda, N., Tiberi, L., Hippenmeyer, S., & Hassan, B. A. (2021). Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Reports, 35(10). https://doi.org/10.1016/J.CELREP.2021.109208
Zhang, X.-M., Lin, E., & Yang, X.-J. (2000). Sonic Hedgehog-mediated ventralization disrupts formation of the midbrain-hindbrain junction in the chick embryo. Developmental Neuroscience, 22(3), 207–216. https://doi.org/10.1159/000017443
Zhao, H., Ayrault, O., Zindy, F., Kim, J. H., & Roussel, M. F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes and Development, 22(6), 722–727. https://doi.org/10.1101/gad.1636408
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Phanindra Prasad Poudel, Chacchu Bhattarai, Arnab Ghosh, Sneha Guruprasad Kalthur

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.