P300 and decision-making in neuromarketing

Authors

  • Aida Azlina Mansor Faculty of Business and Management, Universiti Teknologi MARA Selangor, Malaysia.
  • Salmi Mohd Isa Graduate School of Business, Universiti Sains Malaysia, Penang, Malaysia.
  • Syaharudin Shah Mohd Noor School of Housing, Building and Planning, Universiti Sains Malaysia, Penang, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v4i3.83

Keywords:

neuromarketing, marketing, decision-making, P300 amplitude

Abstract

Neuromarketing provides insights into consumers' decision-making that traditional marketing test methods cannot offer. The foundation in the process of decision-making is P300. Thus, the P300 wave is a potential Event-Related Component (ERP) used to measure consumers' decision-making process. The P300 wave represents a positive transition in human event-related potential. Therefore, the P300 is determined by measuring the amplitude and latency of the consumers. A higher P300 amplitude indicates greater confidence in the decision-making process, while a longer P300 latency indicates lower attentiveness. Thus, P300 in neuroscience, which investigates customers' responses in-depth, cannot be accomplished by typical marketing methods. For many years, P300 components such as attitudes, preferences, and information-based decision-making have been examined extensively in marketing-related research. However, a review of an ERP in neuromarketing method is fewer reported. This mini review describes some analysis on P300 and decision-making by several researchers.

References

Albert, N., Merunka, D., & Valette-Florence, P. (2008). When consumers love their brands: Exploring the concept and its dimensions. Journal of Business Research, 61(10), 1062–1075. https://doi.org/10.1016/j.jbusres.2007.09.014

Alsharif, A. H., Salleh, N. Z. M., Baharun, R., Hashem E, A. R., Mansor, A. A., Ali, J., & Abbas, A. F. (2021). Neuroimaging techniques in advertising research: main applications, development, and brain regions and processes. Sustainability, 13(11), 6488. https://doi.org/10.3390/su13116488

Begum, T., & Reza, F. (2021). Auditory cognitive function assessment during pregnancy: an event-related potential and neuropsychological study. Bangladesh Journal of Medical Science, 20(3), 608–617. https://doi.org/10.3329/bjms.v20i3.52803

Bercea, M. D. (2012). Anatomy of methodologies for measuring consumer behavior in neuromarketing research. In Proceedings of the Lupcon Center for Business Research (LCBR) European Marketing Conference. Ebermannstadt, Germany.

Berry, D. R. (2011). Manipulating paradigm and attention via a mindfulness meditation training program improves P300-Based BCI (Doctoral dissertation, East Tennessee State University).

Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., et al . (2004). Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 24(42), 9353–9360. https://doi.org/10.1523/JNEUROSCI.1897-04.2004

Brookhuis, K., Mulder, G., Mulder, L., & Gloerich, A. (1983). The P3 complex as an index of information processing: The effects of response probability. Biological Psychology, 17(4), 277–296. https://doi.org/10.1016/0301-0511(83)90004-2

Cheng, S.Y., & Hsu, H.T. (2011). Mental fatigue measurement using EEG. Risk Management Trends. https://doi.org/17370

Colaferro, C. A., & Crescitelli, E. (2014). The contribution of neuromarketing to the study of consumer behavior. Brazilian Business Review, 11(3), 123–143. https://doi.org/10.15728/bbr.2014.11.3.6

Dapkevičius, A., & Melnikas, B. (2009). Influence of price and quality to customer satisfaction: neuromarketing approach. Mokslas - Lietuvos Ateitis, 1(3), 17–20. https://doi.org/10.3846/144

Dehaene, S., Kerszberg, M. & Changeux, J.P. (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95, 14529–14534. https://doi.org/ 10.1073/pnas.95.24.14529

Dehaene, S., Sergent, C., & Changeux, J. P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100(14), 8520–8525. https://doi.org/10.1073/pnas.1332574100

Duncan-Johnson, C. C., & Donchin, E. (1982). The P300 component of the event-related brain potential as an index of information processing. Biological Psychology, 14(1–2), 1–52. https://doi.org/10.1016/0301-0511(82)90016-3

Emmerson, R. Y., Dustman, R. E., Shearer, D. E., & Turner, C. W. (1989). P3 latency and symbol digit performance correlations in aging. Experimental Aging Research, 15(3), 151–159. https://doi.org/10.1080/03610738908259769

Fabre, E. F., Causse, M., Pesciarelli, F., & Cacciari, C. (2015). Sex and the money – How gender stereotypes modulate economic decision-making: an ERP study. Neuropsychologia, 75, 221–232. https://doi.org/10.1016/j.neuropsychologia.2015.06.013

Fugate, D. L. (2007). Neuromarketing: a layman's look at neuroscience and its potential application to marketing practice. Journal of Consumer Marketing, 24(7), 385–394. https://doi.org/10.1108/07363760710834807

Harris, J. M., Ciorciari, J., & Gountas, J. (2018). Consumer neuroscience for marketing researchers. Journal of Consumer Behaviour, 17(3), 239–252. https://doi.org/10.1002/cb.1710

He, Q., Sun, Q., Shi, Z., Zhang, X., & Hu, F. (2018). Effect of social distance on outcome evaluation in self–other decision-making. NeuroReport, 29(17), 1499–1503. https://doi.org/10.1097/wnr.0000000000001141

Horlings, R., Datcu, D., & Rothkrantz, L. J. (2008). Emotion recognition using brain activity. In Proceedings of the 9th international conference on computer systems and technologies and workshop for PhD students in computing (pp. II-1).

Johnson, R. & Donchin, E. (1982). Sequential expectancies and decision-making in a changing environment: an electrophysiological approach. Psychophysiology, 19, 183–200. https://doi.org/ 10.1111/j.1469-8986.1982.tb02545.x

Johnson, R., Pfefferbaum, A., & Kopell, B. S. (1985). P300 and Long-Term Memory: Latency Predicts Recognition Performance. Psychophysiology, 22(5), 497–507. https://doi.org/10.1111/j.1469-8986.1985.tb01639

Jongsma, M. L., van Rijn, C. M., Gerrits, N. J., Eichele, T., Steenbergen, B., Maes, J. H., & Quian Quiroga, R. (2013). The learning-oddball paradigm: Data of 24 separate individuals illustrate its potential usefulness as a new clinical tool. Clinical Neurophysiology, 124(3), 514–521. https://doi.org/10.1016/j.clinph.2012.09.009

Key, A. P. F., Dove, G. O., & Maguire, M. J. (2005). Linking brainwaves to the brain: an ERP Primer. Developmental Neuropsychology, 27(2), 183–215. https://doi.org/10.1207/s15326942dn2702_1

Kolar, E. (2014). Neuromarketing and marketing management: contributions of neuroscience for the traditional marketing mix (Bachelor's thesis, University of Twente).

Lepping, R. J., Papa, V. B., & Martin, L. E. (2015). Cognitive neuroscience perspectives on food decision-making: a brief introduction. Journal of Agricultural & Food Industrial Organization, 13(1), 5–14. https://doi.org/10.1515/jafio-2015-0026

Li, J., Sun, Y., Li, M., Li, H., Fan, W., & Zhong, Y. (2020). Social distance modulates prosocial behaviors in the gain and loss contexts: An event-related potential (ERP) study. International Journal of Psychophysiology, 150, 83–91. https://doi.org/10.1016/j.ijpsycho.2020.02.003

Lin, M. H. J., Cross, S. N., Jones, W. J., & Childers, T. L. (2018). Applying EEG in consumer neuroscience. European Journal of Marketing, 52(1/2), 66–91. https://doi.org/10.1108/ejm-12-2016-0805

Linden, D. E. J. (2005). The P300: where in the brain is it produced and what does it tell us? The Neuroscientist, 11(6), 563–576. https://doi.org/10.1177/1073858405280524

Luck, S. J. (2005). An introduction to event related potentials and their neural origins. An introduction to the event related potential technique, 11.

Ma, Q., Wang, X., Shu, L., & Dai, S. (2008). P300 and categorisation in brand extension. Neuroscience Letters, 431(1), 57–61. https://doi.org/10.1016/j.neulet.2007.11.022

Machado, S., Arias-Carrión, O., Sampaio, I., Bittencourt, J., Velasques, B., Teixeira, S., Nardi, A. E., Piedade, R., & Ribeiro, P. (2014). Source imaging of P300 visual evoked potentials and cognitive functions in healthy subjects. Clinical EEG and Neuroscience, 45(4), 262–268. https://doi.org/10.1177/1550059413514389

Mansor, A. A., & Isa, S. M. (2020). Fundamentals of neuromarketing: What is it all about?. Neuroscience Research Notes, 3(4), 22-28. https://doi.org/10.31117/neuroscirn.v3i4.58

Mayaud, L., Congedo, M., van Laghenhove, A., Orlikowski, D., Figère, M., Azabou, E., & Cheliout-Heraut, F. (2013). A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Neurophysiologie Clinique/Clinical Neurophysiology, 43(4), 217–227. https://doi.org/10.1016/j.neucli.2013.06.002

Pelosi, L., Holly, M., Slade, T., Hayward, M., Barrett, G., & Blumhardt, L. D. (1992). Event-related potential (ERP) correlates of performance of intelligence tests. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 84(6), 515–520. https://doi.org/10.1016/0168-5597(92)90040-i

Pileliene, L., & Grigaliunaite, V. (2017). The effect of female celebrity spokesperson in FMCG advertising: neuromarketing approach. Journal of Consumer Marketing, 34(3), 202–213. https://doi.org/10.1108/JCM-02-2016-1723

Pirtošek, Z., Georgiev, De., & Gregoric-Kramberger, M. (2009). Decision making and the brain: Neurologists' view. Interdisciplinary Description of Complex Systems, 7(2), 38–53. http://hrcak.srce.hr/76792

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019

Polich, J., Howard, L., & Starr, A. (1983). P300 Latency Correlates with Digit Span. Psychophysiology, 20(6), 665–669. https://doi.org/10.1111/j.1469-8986.1983.tb00936

Porbadnigk, A. K., Antons, J. N., Blankertz, B., Treder, M. S., Schleicher, R., Möller, S., & Curio, G. (2010). Using ERPs for assessing the (sub) conscious perception of noise. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 2690–2693. https://doi.org/10.1109/IEMBS.2010.5626549

Powers, J., Bieliaieva, K., Wu, S., & Nam, C. (2015). The human factors and ergonomics of P300-based brain-computer interfaces. Brain Sciences, 5(3), 318–356. https://doi.org/10.3390/brainsci5030318

Reimann, M., & Bechara, A. (2010). The somatic marker framework as a neurological theory of decision-making: Review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology, 31(5), 767–776. https://doi.org/10.1016/j.joep.2010.03.002

Rosenfeld, J. P., Biroschak, J. R., Kleschen, M. J., & Smith, K. M. (2005). Subjective and objective probability effects on P300 amplitude revisited. Psychophysiology, 42(3), 356–359. https://doi.org/10.1111/j.1469-8986.2005.00283.x

Roth, V. A. (2014). The potential of neuromarketing as a marketing tool (Bachelor's thesis, University of Twente).

Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older Adults. PLoS ONE, 8(5), e63701. https://doi.org/10.1371/journal.pone.0063701

Samsuri, N., Reza, F., Begum, T., Yusoff, N., Idris, B., Omar, H., & Mohd Isa, S. (2018). Application of EEG/ERP and eye tracking in underlying mechanism of visual attention of auto dealer's advertisement –a neuromarketing research. International Journal of Engineering & Technology, 7(3.22), 5. https://doi.org/10.14419/ijet.v7i3.22.17112

Sehrig, S., Weiss, A., Miller, G. A., & Rockstroh, B. (2019). Decision‐and feedback‐related brain potentials reveal risk processing mechanisms in patients with alcohol use disorder. Psychophysiology, 56(12), e13450. https://doi.org/10.1111/psyp.13450

Sowndhararajan, K., Kim, M., Deepa, P., Park, S., & Kim, S. (2018). Application of the P300 event-related potential in the diagnosis of epilepsy disorder: a review. Scientia Pharmaceutica, 86(2), 10. https://doi.org/10.3390/scipharm86020010

Sun, S., Yu, R., & Wang, S. (2020). Outcome saliency modulates behavioral decision switching. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-71182-9

Teixeira, S., Pompeu, F. A. M. S., Sandoval-carrillo, A., & Salas-pacheco, J. (2015). Effects of modafinil and bromazepam on decision-making: a P300 analysis. International Archives of Medicine, 1–13. https://doi.org/10.3823/1650

Wang, L., Zheng, J., Huang, S., & Sun, H. (2015). P300 and decision making under risk and ambiguity. Computational Intelligence and Neuroscience, 2015, 1–7. https://doi.org/10.1155/2015/108417

Zurawicki, L. (2010). Neuromarketing: Exploringthe brain of the consumer.Springer Science & Business Media.

Zito, M., Fici, A., Bilucaglia, M., Ambrogetti, F. S., & Russo, V. (2021). Assessing the emotional response in social communication: the role of neuromarketing. Frontiers in Psychology, 12, 625570. https://doi.org/10.3389/fpsyg.2021.625570

Downloads

Published

2021-09-04

How to Cite

Mansor, . A. A., Mohd Isa, S. and Mohd Noor, S. S. (2021) “P300 and decision-making in neuromarketing”, Neuroscience Research Notes, 4(3), pp. 21–26. doi: 10.31117/neuroscirn.v4i3.83.