Insights of the pathophysiology of neurodegenerative diseases and the role of phytochemical compounds in its management

Authors

  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Raghava N. Sriramaneni Department of Human Oncology, University of Wisconsin, Wisconsin, USA.

DOI:

https://doi.org/10.31117/neuroscirn.v4i3.77

Keywords:

Neurodegenerative disease, Alzheimer’s Disease, Parkinson’s Disease, active compounds, pathophysiology

Abstract

A neurodegenerative disease (ND) is defined as an irreversible disorder in most cases, leading to progressive loss of neurons and intellectual abilities. ND can lead to fatality in most circumstances, and the elderly above the age of sixty-five (65) constitute the major risk category. The most common type of ND includes Alzheimer's disease (AD), and Parkinson's disease (PD). Other NDs are Huntington's disease (HD), motor neuron disease (MND), spinocerebellar ataxia (SCA), spinal muscular atrophy (SMA), and prion disease. ND strikes mainly in the middle to late life incidence expected to rise as the population ages.

References

Abrahim, N. N., Kanthimathi, M. S., & Abdul-Aziz, A. (2012). Piper betle shows anti-oxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complementary and Alternative Medicine, 12, 220. https://doi.org/10.1186/1472-6882-12-220

Aggarwal, B. B., Ichikawa, H., Garodia, P., Weerasinghe, P., Sethi, G., Bhatt, I. D., Pandey, M. K., Shishodia, S., & Nair, M. G. (2006). From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opinion on Therapeutic Targets, 10(1), 87–118. https://doi.org/10.1517/14728222.10.1.87

Ahmad, N., Feyes, D. K., Nieminen, A. L., Agarwal, R., & Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. Journal of the National Cancer Institute, 89(24), 1881–1886. https://doi.org/10.1093/jnci/89.24.1881

Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and Chemical Toxicology, 46(2), 409–420. https://doi.org/10.1016/j.fct.2007.09.085

Alkam, T., Nitta, A., Mizoguchi, H., Itoh, A., & Nabeshima, T. (2007). A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25-35). Behavioural Brain Research, 180(2), 139–145. https://doi.org/10.1016/j.bbr.2007.03.001

Alzheimer's Association (2021). Mortality and Morbidity. In 2021 Alzheimer's Disease Facts and Figures. Alzheimer's Dement 17(3), 28-34. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf

Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer's disease. Archives of Pharmacal Research, 36(4), 375–399. https://doi.org/10.1007/s12272-013-0036-3

Ansari, N., & Khodagholi, F. (2013). Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect. Current Neuropharmacology, 11(4), 414–429. https://doi.org/10.2174/1570159X11311040005

Appendino, G., Maxia, L., Bascope, M., Houghton, P. J., Sanchez-Duffhues, G., Muñoz, E., & Sterner, O. (2006). A Meroterpenoid NF-κB Inhibitor and Drimane Sesquiterpenoids from Asafetida. Journal of Natural Products, 69(7), 1101–1104. https://doi.org/10.1021/NP0600954

Azemin, A., Dharmaraj, S., Hamdan, M. R., Mat, N., Ismail, Z., & Mohd, K. S. (2014). Discriminating Ficus deltoidea var. bornensis from different localities by HPTLC and FTIR fingerprinting. Journal of Applied Pharmaceutical Science, 4(11), 69-75. https://doi.org/10.7324/JAPS.2014.41112

Baazaoui, N., & Iqbal, K. (2018). A Novel Therapeutic Approach to Treat Alzheimer's Disease by Neurotrophic Support During the Period of Synaptic Compensation. Journal of Alzheimer's Disease, 62(3), 1211–1218. https://doi.org/10.3233/JAD-170839

Bédard, P., Gauvin, S., Ferland, K., Caneparo, C., Pellerin, È., Chabaud, S., & Bolduc, S. (2020). Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel, Switzerland), 7(3), 115. https://doi.org/10.3390/bioengineering7030115

Bereczki, E., Branca, R. M., Francis, P. T., Pereira, J. B., Baek, J. H., Hortobágyi, T., Winblad, B., Ballard, C., Lehtiö, J., & Aarsland, D. (2018). Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain, 141(2), 582–595. https://doi.org/10.1093/brain/awx352

Biasibetti, R., Tramontina, A. C., Costa, A. P., Dutra, M. F., Quincozes-Santos, A., Nardin, P., Bernardi, C. L., Wartchow, K. M., Lunardi, P. S., & Gonçalves, C. A. (2013). Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behavioural Brain Research, 236(1), 186–193. https://doi.org/10.1016/j.bbr.2012.08.039

Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care, 11(6), 733–740. https://doi.org/10.1097/MCO.0b013e32831394b8

Borek, C. (2006). Garlic reduces dementia and heart-disease risk. The Journal of Nutrition, 136(3 Suppl), 810S–812S. https://doi.org/10.1093/jn/136.3.810S

Chen, C. L., Tsai, W. H., Chen, C. J., & Pan, T. M. (2015). Centella asiatica extract protects against amyloid β1-40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. Journal of Traditional and Complementary Medicine, 6(4), 362–369. https://doi.org/10.1016/j.jtcme.2015.07.002

Cho, I. H. (2012). Effects of Panax ginseng in Neurodegenerative Diseases. Journal of Ginseng Research, 36(4), 342–353. https://doi.org/10.5142/jgr.2012.36.4.342

Cho, S. O., Ban, J. Y., Kim, J. Y., Jeong, H. Y., Lee, I. S., Song, K. S., Bae, K., & Seong, Y. H. (2009). Aralia cordata protects against amyloid beta protein (25-35)-induced neurotoxicity in cultured neurons and has antidementia activities in mice. Journal of Pharmacological Sciences, 111, 22–32. https://doi.org/10.1254/jphs.08271FP

Chow, T. W., Pollock, B. G., & Milgram, N. W. (2007). Potential cognitive enhancing and disease modification effects of SSRIs for Alzheimer's disease. Neuropsychiatric Disease and Treatment, 3(5), 627–636.

Coovert, D. D., Le, T. T., McAndrew, P. E., Strasswimmer, J., Crawford, T. O., Mendell, J. R., Coulson, S. E., Androphy, E. J., Prior, T. W., & Burghes, A. H. (1997). The survival motor neuron protein in spinal muscular atrophy. Human Molecular Genetics, 6(8), 1205–1214. https://doi.org/10.1093/hmg/6.8.1205

Danial, M., Saghal, G., Mubbarakh, S. A., Sundarasekar, J., & Subramaniam, S. (2013). Antibacterial studies on in vivo plant parts of medicinally important Eurycoma longifolia (Tongkat Ali). Pakistan Journal of Botany, 45(5), 1693-1700.

Datta, A., Ghoshdastidar, S., & Singh, M. (2011). Antimicrobial property of Piper betel leaf against clinical isolates of bacteria. International Journal of Pharmaceutical Sciences and Research, 2, 104-109.

Dauer, W., & Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron, 39(6), 889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

Defeudis, F. V. (2002). Bilobalide and neuroprotection. Pharmacological Research, 46(6), 565–568. https://doi.org/10.1016/s1043-6618(02)00233-5

Delmas, D., Lançon, A., Colin, D., Jannin, B., & Latruffe, N. (2006). Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Current Drug Targets, 7, 423-442.

Dhanasekaran, M., Holcomb, L. A., Hitt, A. R., Tharakan, B., Porter, J. W., Young, K. A., & Manyam, B. V. (2009). Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer's disease animal model. Phytotherapy Research, 23(1), 14–19. https://doi.org/10.1002/ptr.2405

Dugger, B. N., & Dickson, D. W. (2017). Pathology of Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, 9(7), a028035. https://doi.org/10.1101/cshperspect.a028035

Durairajan, S. S., Liu, L. F., Lu, J. H., Chen, L. L., Yuan, Q., Chung, S. K., Huang, L., Li, X. S., Huang, J. D., & Li, M. (2012). Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiology of Aging, 33(12), 2903–2919. https://doi.org/10.1016/j.neurobiolaging.2012.02.016

Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., & Guillemin, G. J. (2012). Neuroprotective effect of natural products against Alzheimer's disease. Neurochemical Research, 37(9), 1829–1842. https://doi.org/10.1007/s11064-012-0799-9

Eubanks, L. M., Rogers, C. J., Beuscher, A. E., IV, Koob, G. F., Olson, A. J., Dickerson, T. J., & Janda, K.D. (2006). A molecular link between the active component of marijuana and Alzheimer's disease pathology. Molecular Pharmaceutics, 3(6), 773–777. https://doi.org/10.1021/mp060066m

Eyjolfsdottir, H., Eriksdotter, M., Linderoth, B., Lind, G., Juliusson, B., Kusk, P., Almkvist, O., Andreasen, N., Blennow, K., Ferreira, D., Westman, E., Nennesmo, I., Karami, A., Darreh-Shori, T., Kadir, A., Nordberg, A., Sundström, E., Wahlund, L. O., Wall, A., Wiberg, M., … Almqvist, P. (2016). Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimer's Research & Therapy, 8(1), 30. https://doi.org/10.1186/s13195-016-0195-9

Funk, J. L., Frye, J. B., Oyarzo, J. N., Kuscuoglu, N., Wilson, J., McCaffrey, G., Stafford, G., Chen, G., Lantz, R. C., Jolad, S. D., Sólyom, A. M., Kiela, P. R., & Timmermann, B. N. (2006). Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis. Arthritis and Rheumatism, 54(11), 3452–3464. https://doi.org/10.1002/art.22180

Gan, L., Cookson, M. R., Petrucelli, L., & La Spada A.R. (2018). Converging pathways in neurodegeneration, from genetics to mechanisms. Nature Neuroscience, 21, 1300–1309. https://doi.org/10.1038/s41593-018-0237-7

Gohil, K., & Patel, J. (2010). A review on Bacopa monniera: Current research and future prospects. International Journal of Green Pharmacy, 4(1). 1-9. https://doi.org/10.4103/0973-8258.62156

Ha, G. T., Wong, R. K., & Zhang, Y. (2011). Huperzine a as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies. Chemistry & Biodiversity, 8(7), 1189–1204. https://doi.org/10.1002/cbdv.201000269

Hakiman, M., & Maziah, M. (2009). Non enzymatic and enzymatic anti-oxidant activities in aqueous extract of different Ficus deltoidea accessions. Journal of Medicinal Plants Research, 3(3), 120-131.

Hamaguchi, T., Ono, K., & Yamada, M. (2010). REVIEW: Curcumin and Alzheimer's disease. CNS Neuroscience & Therapeutics, 16(5), 285–297. https://doi.org/10.1111/j.1755-5949.2010.00147.x

Harvard NeuroDiscovery Center (2021). The Challenge of Neurodegenerative Diseases. Retrieved June 15, 2021 from https://neurodiscovery.harvard.edu/challenge

Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., Barres, B. A., Lemere, C. A., Selkoe, D. J., & Stevens, B. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352(6286), 712–716. https://doi.org/10.1126/science.aad8373

Howes, M. J., Perry, N. S., & Houghton, P. J. (2003). Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytotherapy Research, 17(1), 1–18. https://doi.org/10.1002/ptr.1280

Huang, M., Jiang, X., Liang, Y., Liu, Q., Chen, S., & Guo, Y. (2017). Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Experimental Gerontology, 91, 25–33. https://doi.org/10.1016/j.exger.2017.02.004

Jiménez-Aliaga, K., Bermejo-Bescós, P., Benedí, J., & Martín-Aragón, S. (2011). Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences, 89(25-26), 939–945. https://doi.org/10.1016/j.lfs.2011.09.023

Joseph, B., & Jini, D. (2011). Insight into the hypoglycaemic effect of traditional Indian herbs used in the treatment of diabetes. Research Journal of Medicinal Plant, 5, 352-376.

Joshi, S. S., Kuszynski, C. A., & Bagchi, D. (2001). The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Current Pharmaceutical Biotechnology, 2, 187-200.

Kantar Gok, D., Ozturk, N., Er, H., Aslan, M., Demir, N., Derin, N., Agar, A., & Yargicoglu, P. (2015). Effects of rosmarinic acid on cognitive and biochemical alterations in ovariectomised rats treated with D-galactose. Folia Histochemica et Cytobiologica, 53(4), 283–293. https://doi.org/10.5603/fhc.a2015.0034

Karthick, C., Periyasamy, S., Jayachandran, K. S., & Anusuyadevi, M. (2016). Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology. Frontiers in Molecular Neuroscience, 9, 28. https://doi.org/10.3389/fnmol.2016.00028

Kashyap, G., Bapat, D., Das, D., Gowaikar, R., Amritkar, R. E., Rangarajan, G., Ravindranath, V., & Ambika, G. (2019). Synapse loss and progress of Alzheimer’s disease -A network model. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-43076-y

Kim, J., Lee, H. J., & Lee, K. W. (2010). Naturally occurring phytochemicals for the prevention of Alzheimer's disease. Journal of Neurochemistry, 112(6), 1415–1430. https://doi.org/10.1111/j.1471-4159.2009.06562.x

Kovacs, G. G. (2016). Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. International Journal of Molecular Sciences, 17(2), 189. https://doi.org/10.3390/ijms17020189

Kulkarni, S. K., & Dhir, A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3), 317–324. https://doi.org/10.1002/ptr.2968

Kumar, A., Naidu, P. S., Seghal, N., & Padi, S. S. (2007). Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology, 79(1), 17–26. https://doi.org/10.1159/000097511

Lee, J. W., Lee, Y. K., Ban, J. O., Ha, T. Y., Yun, Y. P., Han, S. B., Oh, K. W., & Hong, J. T. (2009). Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. The Journal of nutrition, 139(10), 1987–1993. https://doi.org/10.3945/jn.109.109785

Li, F., Gong, Q., Dong, H., & Shi, J. (2012). Resveratrol, a neuroprotective supplement for Alzheimer's disease. Current Pharmaceutical Design, 18(1), 27–33. https://doi.org/10.2174/138161212798919075

Licker, V., Kövari, E., Hochstrasser, D. F., & Burkhard, P. R. (2009). Proteomics in human Parkinson's disease research. Journal of Proteomics, 73(1), 10–29. https://doi.org/10.1016/j.jprot.2009.07.007

Lv, J., Jia, H., Jiang, Y., Ruan, Y., Liu, Z., Yue, W., Beyreuther, K., Tu, P., & Zhang, D. (2009). Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-beta secretion in vitro. Acta Physiologica, 196(4), 419–425. https://doi.org/10.1111/j.1748-1716.2009.01961.x

Malik, J., Karan, M., & Vasisht, K. (2011). Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharmaceutical Biology, 49(12), 1234–1242. https://doi.org/10.3109/13880209.2011.584539

Marks, S. M., Lockhart, S. N., Baker, S. L., & Jagust, W. J. (2017). Tau and β-amyloid are associated with medial temporal lobe structure, function, and memory encoding in normal aging. Journal of Neuroscience, 37(12), 3192–3201. https://doi.org/10.1523/JNEUROSCI.3769-16.2017

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201

Mehrpour, M., & Codogno, P. (2010). Prion protein: From physiology to cancer biology. Cancer Letters, 290(1), 1–23. https://doi.org/10.1016/j.canlet.2009.07.009

Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19. https://doi.org/10.4103/0972-2327.40220

Mohd Effendy, N., Mohamed, N., Muhammad, N., Naina Mohamad, I., & Shuid, A. N. (2012). Eurycoma longifolia: Medicinal plant in the prevention and treatment of male osteoporosis due to androgen deficiency. Evidence-based Complementary and Alternative Medicine, 2012, 125761. https://doi.org/10.1155/2012/125761

Moss, M., Cook, J., Wesnes, K., & Duckett, P. (2003). Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. International Journal of Neuroscience, 113(1), 15–38. https://doi.org/10.1080/00207450390161903

Nillert, N., Pannangrong, W., Welbat, J. U., Chaijaroonkhanarak, W., Sripanidkulchai, K., & Sripanidkulchai, B. (2017). Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients, 9(1), 24. https://doi.org/10.3390/nu9010024

Ningsih, S., Fachrudin, F., Rismana, E., Purwaningsih, E. H., Sumaryono, W., &. Jusman, S. W. A. (2014). Evaluation Of antilipid peroxidation activity of gambir extract on liver homogenat in vitro. International Journal of PharmTech Research, 6, 982-989.

Oboh, G., Ademiluyi, A. O., & Akinyemi, A. J. (2012). Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Experimental and Toxicologic Pathology, 64(4), 315–319. https://doi.org/10.1016/j.etp.2010.09.004

Ossola, B., Kääriäinen, T. M., & Männistö, P. T. (2009). The multiple faces of quercetin in neuroprotection. Expert Opinion on Drug Safety, 8(4), 397–409. https://doi.org/10.1517/14740330903026944

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47. https://doi.org/10.1017/jns.2016.41

Pataki, T., Bak, I., Kovacs, P., Bagchi, D., Das, D. K., & Tosaki, A. (2002). Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. The American Journal of Clinical Nutrition, 75(5), 894–899. https://doi.org/10.1093/AJCN/75.5.894

Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry, 62(2), 121–125. https://doi.org/10.1016/s0031-9422(02)00513-7

Pilotto, F., & Saxena , S. (2018). Epidemiology of inherited cerebellar ataxias and challenges in clinical research. Clinical & Translational Neuroscience, 2(2), 1-12. https://doi.org/10.1177/2514183X18785258

Prentice, H., Modi, J. P., & Wu, J. Y. (2015). mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Medicine and Cellular Longevity, 2015, 964518. https://doi.org/10.1155/2015/964518

Rafii, M. S., Walsh, S., Little, J. T., Behan, K., Reynolds, B., Ward, C., Jin, S., Thomas, R., Aisen, P. S., & Alzheimer's Disease Cooperative Study. (2011). A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology, 76(16), 1389–1394. https://doi.org/10.1212/WNL.0b013e318216eb7b

Ramaswamy, S., McBride, J. L., & Kordower, J. H. (2007). Animal Models of Huntington's Disease. ILAR Journal, 48(4), 356–373. https://doi.org/10.1093/ilar.48.4.356

Ratia, M., Giménez-Llort, L., Camps, P., Muñoz-Torrero, D., Pérez, B., Clos, M. V., & Badia, A. (2013). Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD). Neuro-degenerative Diseases, 11(3), 129–140. https://doi.org/10.1159/000336427

Relja, M. (2004). Pathophysiology and classification of neurodegenerative diseases. EJIFCC, 15(3), 97–99.

Roos, R. A. (2010). Huntington's disease: a clinical review. Orphanet Journal of Rare Diseases, 5, 40. https://doi.org/10.1186/1750-1172-5-40

Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Russo, G. L. (2012). The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochemical Pharmacology, 83(1), 6–15. https://doi.org/10.1016/j.bcp.2011.08.010

Salter, M. W., & Stevens, B. (2017). Microglia emerge as central players in brain disease. Nature Medicine, 23(9), 1018–1027. https://doi.org/10.1038/NM.4397

Sethiya, N. K., Nahata, A., Mishra, S. H., & Dixit, V. K. (2009). An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. Journal of Chinese Integrative Medicine, 7(11), 1001–1022. https://doi.org/10.3736/jcim20091101

Sharifi-Rad, J., Melgar-Lalanne, G., Hernández-Álvarez, Javier, A., Taheri, Y., Shaheen, S., Kregiel, D., Antolak, H., Pawlikowska, E., Brdar-Jokanović, M., Rajkovic, J., Hosseinabadi, T., Ljevnaić-Mašić, B., Baghalpour, N., Mohajeri, M., Fokou, P. V. T., & Martins, N. (2020a). Malva species: Insights on its chemical composition towards pharmacological applications. Phytotherapy Research, 34(3), 546–567. https://doi.org/10.1002/PTR.6550

Sharifi-Rad, M., Lankatillake, C., Dias, D. A., Docea, A. O., Mahomoodally, M. F., Lobine, D., Chazot, P. L., Kurt, B., Tumer, T. B., Moreira, A. C., Sharopov, F., Martorell, M., Martins, N., Cho, W. C., Calina, D., & Sharifi-Rad, J. (2020b). Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. Journal of Clinical Medicine, 9(4), 1061. https://doi.org/10.3390/jcm9041061

Sheng, M., Sabatini, B. L., & Südhof, T. C. (2012). Synapses and Alzheimer's disease. Cold Spring Harbor Perspectives in Biology, 4(5), a005777. https://doi.org/10.1101/cshperspect.a005777

Shi, C., Zhao, L., Zhu, B., Li, Q., Yew, D. T., Yao, Z., & Xu, J. (2009). Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chemico-Biological Interactions, 181(1), 115–123. https://doi.org/10.1016/j.cbi.2009.05.010

Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., & Constantin, G. (2020). In vitro models of neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 8, 328. https://doi.org/10.3389/fcell.2020.00328

Sripradha, S., (2014). Betel leaf-the green gold. Journal of Phamaceutical Sciences and Research, 6(1), 36-37.

Subramaniam, S., Hedayathullah Khan, H. B., Elumalai, N., & Sudha Lakshmi, S. Y. (2015). Hepatoprotective effect of ethanolic extract of whole plant of Andrographis paniculata against CCl4-induced hepatotoxicity in rats. Comparative Clinical Pathology 2015 24:5, 24(5), 1245–1251. https://doi.org/10.1007/S00580-015-2067-2

Tawab, M. A., Bahr, U., Karas, M., Wurglics, M., & Schubert-Zsilavecz, M. (2003). Degradation of ginsenosides in humans after oral administration. Drug Metabolism and Disposition, 31(8), 1065–1071. https://doi.org/10.1124/dmd.31.8.1065

Tchantchou, F., Lacor, P. N., Cao, Z., Lao, L., Hou, Y., Cui, C., Klein, W. L., & Luo, Y. (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. Journal of Alzheimer's disease, 18(4), 787–798. https://doi.org/10.3233/JAD-2009-1189

Trancikova, A., Ramonet, D., & Moore, D. J. (2011). Genetic mouse models of neurodegenerative diseases. Progress in Molecular Biology and Translational Science, 100, 419–482. https://doi.org/10.1016/B978-0-12-384878-9.00012-1

van Beek, T. A. (2002). Chemical analysis of Ginkgo biloba leaves and extracts. Journal of chromatography A, 967(1), 21–55. https://doi.org/10.1016/s0021-9673(02)00172-3

Varghese, C. P., Ambrose, C., Jin, S. C., Lim, Y. J., & Keisaban, T. (2013). Anti-oxidant and anti-inflammatory activity of Eurycoma longifolia Jack, a traditional medicinal plant in Malaysia. International Journal of Pharmaceutical Sciences and Nanotechnology, 5, 1875-1878. https://doi.org/10.37285/ijpsn.2012.5.4.7

Venkatesan, R., Ji, E., & Kim, S. Y. (2015). Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: a comprehensive review. BioMed Research International, 2015, 814068. https://doi.org/10.1155/2015/814068

Wang, C. Y., Zheng, W., Wang, T., Xie, J. W., Wang, S. L., Zhao, B. L., Teng, W. P., & Wang, Z. Y. (2011). Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology, 36(5), 1073–1089. https://doi.org/10.1038/npp.2010.245

Wang, W. Y., Tan, M. S., Yu, J. T., & Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Annals of Translational Medicine, 3(10), 136. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49

Wilkinson, K., Boyd, J. D., Glicksman, M., Moore, K. J., & El Khoury, J. (2011). A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. Journal of Biological Chemistry, 286, 34914–34922. https://doi.org/10.1074/jbc.m111.232116

Wolozin, B., & Behl, C. (2000). Mechanisms of neurodegenerative disorders: Part 1: Protein aggregates. Archives of Neurology, 57(6),793–796. https://doi.org/10.1001/archneur.57.6.793

Yakoot, M., Salem, A., & Helmy, S. (2013). Effect of Memo®, a natural formula combination, on Mini-Mental State Examination scores in patients with mild cognitive impairment. Clinical Interventions in Aging, 8, 975–981. https://doi.org/10.2147/CIA.S44777

Yalcin, G., & Yalcin, A. (2018). Metabolic syndrome and neurodegenerative diseases. Journal of Geriatric Medicine and Gerontology, 4, 042. https://doi.org/10.23937/2469-5858/1510042

Yang, L., Hao, J., Zhang, J., Xia, W., Dong, X., Hu, X., Kong, F., & Cui, X. (2009). Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin. The Journal of Pharmacy and Pharmacology, 61(3), 375–380. https://doi.org/10.1211/JPP/61.03.0013

Zhu, F., & Qian, C. (2006). Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neuroscience, 7, 78. https://doi.org/10.1186/1471-2202-7-78

Downloads

Published

2021-08-28

How to Cite

Hassan, Z. and Sriramaneni, R. N. (2021) “Insights of the pathophysiology of neurodegenerative diseases and the role of phytochemical compounds in its management”, Neuroscience Research Notes, 4(3), pp. 1–10. doi: 10.31117/neuroscirn.v4i3.77.