Open field mirror test as a tool for the assessment of visual functions in rats with streptozotocin-induced diabetes
DOI:
https://doi.org/10.31117/neuroscirn.v4i3.74Keywords:
diabetes, visual function test, visual-behaviour response, open field test, mirror testAbstract
To evaluate the use of mirror test in an open field arena as a visual function assessment tool in a rodent model of diabetes. Male Sprague-Dawley rats were divided into diabetic rats, that received intraperitoneal streptozotocin (55 mg/kg body weight) for induction of diabetes, and control rats that similarly received citrate buffer. Rats with a blood glucose level of more than 20 mmol/L were considered diabetic. Blood glucose was monitored weekly throughout the experimental period. General behavioural assessment of the rats was done at week 12 post-induction using open field arena, followed by visual-behavioural assessment with mirror and reversed mirror added in the arena. Subsequently, rats were euthanised and subjected to haematoxylin and eosin staining (H&E) staining to assess changes in retinal morphology. In the open field test, diabetic rats showed a lesser number of zone crossings (3.73-fold, p<0.001), total distance travelled (2.02-fold, p<0.001), number of rearing episodes (2.22-fold, p<0.001) and number of grooming episodes (4.33-fold, p<0.01) but a greater number of freezing episodes (2.47-fold, p<0.001) and number of the faecal pellet (4.17-fold, p<0.01) compared to control rats. Control rats spent more time with higher zone entries toward mirrored than non-mirrored and reversed mirror zones (p<0.05 and p<0.01 respectively), whereas diabetic rats showed no preference for zones. Normal rats also showed higher freezing episodes within the mirrored zone compared to diabetic rats (2.00-fold, p<0.05). The retinal morphometry showed significant thinning of various retinal layers in the diabetic group compared to control rats. Visual behavioural activities of diabetic rats in an open field arena with the presence of a mirror could detect the presence of visual loss. Changes in visual functions positively correlated with changes in retinal morphology. Therefore, an open field mirror test could be used as an alternative for assessing visual function in the rodent model of diabetes.
References
References
Abdul Nasir, N. A., Agarwal, R., Sheikh Abdul Kadir, S. H., Vasudevan, S., Tripathy, M., Iezhitsa, I., Mohammad Daher, A., Ibrahim, M. I., & Mohd Ismail, N. (2017). Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats. PloS One, 12(3), e0174542. https://doi.org/10.1371/journal.pone.0174542
Aizuddin Mohd Lazaldin, M., Iezhitsa, I., Agarwal, R., Salmah Bakar, N., Agarwal, P., & Mohd Ismail, N. (2020). Neuroprotective effects of brain‐derived neurotrophic factor against amyloid beta 1–40‐induced retinal and optic nerve damage. European Journal of Neuroscience, 51(12), 2394–2411. https://doi.org/10.1111/ejn.14662
Ali, S. A., Zaitone, S. A., Dessouki, A. A., & Ali, A. A. (2019). Pregabalin affords retinal neuroprotection in diabetic rats: Suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Experimental Eye Research, 184, 78-90. https://doi.org/10.1016/j.exer.2019.04.014
Aparicio, V., Coll-Risco, I., Camiletti-Moirón, D., Nebot, E., Martínez, R., López-Jurado, M., & Aranda, P. (2016). Interval aerobic training combined with strength-endurance exercise improves metabolic markers beyond caloric restriction in Zucker rats. Nutrition, Metabolism and Cardiovascular Diseases, 26(8), 713-721. https://doi.org/10.1016/j.numecd.2016.01.005
Aung, M. H., na Park, H., Han, M. K., Obertone, T. S., Abey, J., Aseem, F., Thule, P. M., Iuvone, P. M., & Pardue, M. T. (2014). Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. Journal of Neuroscience, 34(3), 726-736. https://doi.org/10.1523/JNEUROSCI.3483-13.2014
Bao, Y. K., Yan, Y., Gordon, M., McGill, J. B., Kass, M., & Rajagopal, R. (2019). Visual Field Loss in Patients With Diabetes in the Absence of Clinically-Detectable Vascular Retinopathy in a Nationally Representative Survey. Investigative Ophthalmology & Visual Science, 60(14), 4711-4716. https://doi.org/10.1167/iovs.19-28063
Broom, D. M., Sena, H., & Moynihan, K. L. (2009). Pigs learn what a mirror image represents and use it to obtain information. Animal Behaviour, 78(5), 1037-1041. https://doi.org/10.1016/j.anbehav.2009.07.027
Cheng, J. T., Huang, C. C., Liu, I. M., Tzeng, T. F., & Chang, C. J. (2006). Novel mechanism for plasma glucose–lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes, 55(3), 819-825. https://doi.org/10.2337/diabetes.55.03.06.db05-0934
Douglas, R., Alam, N., Silver, B., McGill, T., Tschetter, W., & Prusky, G. (2005). Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual Neuroscience, 22(5), 677-684. https://doi.org/10.1017/S0952523805225166
Ergenc, M., Ozacmak, H. S., Turan, I., & Ozacmak, V. H. (2019). Melatonin reverses depressive and anxiety like-behaviours induced by diabetes: involvement of oxidative stress, age, rage and S100B levels in the hippocampus and prefrontal cortex of rats. Archives of Physiology and Biochemistry, 1-9. https://doi.org/10.1080/13813455.2019.1684954
Etemad, A., Sheikhzadeh, F., & Asl, N. A. (2015). Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurological Research, 37(3), 217-222. https://doi.org/10.1179/1743132814Y.0000000428
Hall, C., & Ballachey, E. L. (1932). A study of the rat's behavior in a field. A contribution to method in comparative psychology. University of California Publications in Psychology.
He, M., Long, P., Guo, L., Zhang, M., Wang, S., & He, H. (2019). Fushiming capsule attenuates diabetic rat retina damage via antioxidation and anti-inflammation. Evidence-Based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/5376439
Henricsson, M., & Heijl, A. (1994). Visual fields at different stages of diabetic retinopathy. Acta Ophthalmologica, 72(5), 560-569. https://doi.org/10.1111/j.1755-3768.1994.tb07180.x
Hills, T. T., & Butterfill, S. (2015). From foraging to autonoetic consciousness: The primal self as a consequence of embodied prospective foraging. Current Zoology, 61(2), 368–381. https://doi.org/10.1093/czoolo/61.2.368
Hölscher, C., Schnee, A., Dahmen, H., Setia, L., & Mallot, H. A. (2005). Rats are able to navigate in virtual environments. Journal of Experimental Biology, 208(3), 561-569. https://doi.org/10.1242/jeb.01371
Iezhitsa, I. N., Spasov, A. A., Kharitonova, M. V., & Kravchenko, M. S. (2011). Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioural responses to clonidine, d-amphetamine, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan. Nutritional Neuroscience, 14(1), 10-24. https://doi.org/10.1179/174313211X12966635733277
Jackson, G. R., & Barber, A. J. (2010). Visual dysfunction associated with diabetic retinopathy. Current Diabetes Reports, 10(5), 380-384. https://doi.org/10.1007/s11892-010-0132-4
Jiang, J., Liu, Y., Chen, Y., Ma, B., Qian, Y., Zhang, Z., Zhu, D., Wang, Z., & Xu, X. (2018). Analysis of changes in retinal thickness in type 2 diabetes without diabetic retinopathy. Journal of Diabetes Research, 2018. https://doi.org/10.1155/2018/3082893
Khathi, A., Serumula, M. R., Myburg, R. B., Van Heerden, F. R., & Musabayane, C. T. (2013). Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One, 8(11), e81632. https://doi.org/10.1371/journal.pone.0081632
Kohzaki, K., Vingrys, A. J., & Bui, B. V. (2008). Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science, 49(8), 3595-3604. https://doi.org/10.1167/iovs.08-1679
Kim, S.-J., Yoo, W.-S., Choi, M., Chung, I., Yoo, J.-M., & Choi, W.-S. (2016). Increased O-GlcNAcylation of NF-κB enhances retinal ganglion cell death in streptozotocin-induced diabetic retinopathy. Current Eye Research, 41(2), 249-257. https://doi.org/10.3109/02713683.2015.1006372
Maguire, M. G., Liu, D., Glassman, A. R., Jampol, L. M., Johnson, C. A., Baker, C. W., Bressler, N. M., Gardner, T. W., Pieramici, D., & Stockdale, C. R. (2020). Visual Field Changes Over 5 Years in Patients Treated With Panretinal Photocoagulation or Ranibizumab for Proliferative Diabetic Retinopathy. JAMA Ophthalmology, 138(3), 285-293. https://doi.org/10.1001/jamaophthalmol.2019.5939
Mdzomba, J. B., Joly, S., Rodriguez, L., Dirani, A., Lassiaz, P., Behar-Cohen, F., & Pernet, V. (2020). Nogo-A-targeting antibody promotes visual recovery and inhibits neuroinflammation after retinal injury. Cell Death & Disease, 11(2), 1-16. https://doi.org/10.1038/s41419-020-2302-x
Naim, M. Y., Friess, S., Smith, C., Ralston, J., Ryall, K., Helfaer, M. A., & Margulies, S. S. (2010). Folic acid enhances early functional recovery in a piglet model of pediatric head injury. Developmental Neuroscience, 32(5-6), 466-479. https://doi.org/10.1159/000322448
Ozaki, H., Inoue, R., Matsushima, T., Sasahara, M., Hayashi, A., & Mori, H. (2018). Serine racemase deletion attenuates neurodegeneration and microvascular damage in diabetic retinopathy. PloS One, 13(1), 1-11. https://doi.org/10.1371/journal.pone.0190864
Prusky, G. T., West, P. W., & Douglas, R. M. (2000). Behavioral assessment of visual acuity in mice and rats. Vision Research, 40(16), 2201-2209. https://doi.org/10.1016/s0042-6989(00)00081-x
Rajabi, M., Mohaddes, G., Farajdokht, F., Nayebi Rad, S., Mesgari, M., & Babri, S. (2018). Impact of loganin on pro-inflammatory cytokines and depression-and anxiety-like behaviors in male diabetic rats. Physiology International, 105(2), 116-126. https://doi.org/10.1556/2060.105.2018.1.8
Rajashree, R., Kholkute, S. D., & Goudar, S. S. (2011). Effects of duration of diabetes on behavioural and cognitive parameters in streptozotocin-induced juvenile diabetic rats. The Malaysian Journal of Medical Sciences, 18(4), 26-31.
Sima, A. A., Zhang, W., Muzik, O., Kreipke, C. W., Rafols, J. A., & Hoffman, W. H. (2009). Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-peptide. The Review of Diabetic Studies, 6(3), 211-222. https://doi.org/10.1900/RDS.2009.6.211
Simó, R., Stitt, A. W., & Gardner, T. W. (2018). Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia, 61(9), 1902-1912. https://doi.org/10.1007/s00125-018-4692-1
Spasov, A., Iezhitsa, I., Kharitonova, M., & Kravchenko, M. (2008). Depression-like and anxiety-related behaviour of rats fed with magnesium-deficient diet. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 58(4), 476-485.
Tang, Z.-J., Zou, W., Yuan, J., Zhang, P., Tian, Y., Xiao, Z.-F., Li, M.-H., Wei, H.-J., & Tang, X.-Q. (2015). Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in streptozotocin-induced diabetic rats through inhibition of hippocampal oxidative stress. Behavioural Pharmacology, 26(5), 427-435. https://doi.org/10.1097/FBP.0000000000000143
Tang, Z., Chan, M. Y., Leung, W. Y., Wong, H. Y., Ng, C. M., Chan, V. T., Wong, R., Lok, J., Szeto, S., & Chan, J. C. (2020). Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography: a systematic review and meta-analysis. Eye, 1-9. https://doi.org/10.1038/s41433-020-1020-z
Teo, Z. L., Tham, Y. C., Yu, M. C. Y., Chee, M. L., Rim, T. H., Cheung, N., ... & Cheng, C. Y. (2021). Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology, 2021, https://doi.org/10.1016/j.ophtha.2021.04.027.
Thomas, B. B., Seiler, M. J., Sadda, S. R., Coffey, P. J., & Aramant, R. B. (2004). Optokinetic test to evaluate visual acuity of each eye independently. Journal of Neuroscience Methods, 138(1-2), 7-13. https://doi.org/10.1016/j.jneumeth.2004.03.007
Thorré, K., Chaouloff, F., Sarre, S., Meeusen, R., Ebinger, G., & Michotte, Y. (1997). Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats. Brain Research, 772(1-2), 209-216. https://doi.org/10.1016/s0006-8993(97)00841-x
Tonade, D., & Kern, T. S. (2020). Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Progress in Retinal and Eye Research, 83, 100919. https://doi.org/10.1016/j.preteyeres.2020.100919
Trento, M., Durando, O., Lavecchia, S., Charrier, L., Cavallo, F., Costa, M. A., Hernández, C., Simó, R., Porta, M., & Investigators, E. T. (2017). Vision related quality of life in patients with type 2 diabetes in the EUROCONDOR trial. Endocrine, 57(1), 83-88. https://doi.org/10.1007/s12020-016-1097-0
Tzeng, T. F., Liu, W. Y., Liou, S. S., Hong, T. Y., & Liu, I. M. (2016). Antioxidant-rich extract from plantaginis semen ameliorates diabetic retinal injury in a streptozotocin-induced diabetic rat model. Nutrients, 8(9), 572. https://doi.org/10.3390/nu8090572
Ueno, H., Suemitsu, S., Murakami, S., Kitamura, N., Wani, K., Takahashi, Y., ... & Ishihara, T. (2020). Behavioural changes in mice after getting accustomed to the mirror. Behavioural Neurology, 2020, 4071315. https://doi.org/10.1155/2020/4071315
Wallace, D. J., Greenberg, D. S., Sawinski, J., Rulla, S., Notaro, G., & Kerr, J. N. (2013). Rats maintain an overhead binocular field at the expense of constant fusion. Nature, 498(7452), 65-69. https://doi.org/10.1038/nature12153
Yang, Q., Xu, Y., Xie, P., Cheng, H., Song, Q., Su, T., Yuan, S., & Liu, Q. (2015). Retinal neurodegeneration in db/db mice at the early period of diabetes. Journal of Ophthalmology, 2015(1), 1-9. https://doi.org/10.1155/2015/757412
Zhang, X., Peng, L., Dai, Y., Sheng, X., Chen, S., & Xie, Q. (2020). Effects of Coconut Water on Retina in Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2020, 9450634. https://doi.org/10.1155/2020/9450634
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Muhammad Zulfiqah Sadikan, Nurul Alimah Abdul Nasir, Igor Iezhitsa, Renu Agarwal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.