An era of brain-computer interface: BCI migration into space

Authors

  • Tamara Hummadi Department of Neuroscience, Bahcesehir University, Istanbul, Turkey.
  • Indranath Chatterjee Department of Computer Engineering, Tongmyong University, Busan, South Korea. https://orcid.org/0000-0001-9242-8888

DOI:

https://doi.org/10.31117/neuroscirn.v3i5.68

Keywords:

Brain Computer Interface (BCI), neuroscience, neurotechnology, space science, NASA, SpaceX, Starlink, Neuralink

Abstract

Brain-computer interface's (BCI) potential applications increased tremendously over the past decade. The rising of this new technology is providing promising solutions in the field of aerospace and space exploration.  As astronauts face diverse challenges in long-duration spaceflight, BCI can help astronauts deal with complicated tasks with a minimal mental workload. It may provide intelligent communication systems, maximize safety and security, facilitate space discovery missions, and enhance astronauts' overall health and wellbeing. In new ventures such as SpaceX, Starlink, and Neuralink, pioneers adopt futuristic strategies that use BCI as their main anchor. Such efforts are valuable in neuroscience as they will reveal information that will allow neuroscientists to deeper understand the brain's mechanisms.

References

Abdulkader, S. N., Atia, A., & Mostafa, M. S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230). https://doi.org/10.1016/j.eij.2015.06.002

Armstrong, D., & Ma, M. (2013). Researcher controls colleague’s motions in 1st human brain-to-brain interface | UW News. UW News. https://www.washington.edu/news/2013/08/27/researcher-controls-colleagues-motions-in-1st-human-brain-to-brain-interface/

Arzi, A., Banerjee, S., Cox, J., D’Souza, D., Brigard, F., Doll, B. B., Fairley, J. A., Fleming, S., Herholz, S., King, D. R., Libby, L. A., Myers, J. C., Neta, M., Pitcher, D., Power, J. D., Rass, O., Ritchey, M., Jubal, E. R., Royston, A., … Wood, S. (2014). The Significance of Cognitive Neuroscience: Findings, Applications, and Challenges. In M. S. Gazzaniga & G. R. Mangun (Eds.), The Cognitive Neurosciences (5th edition, pp. 1071–1078). MIT Press.

Blaber, E., Marçal, H., & Burns, B. P. (2010). Bioastronautics: The influence of microgravity on astronaut health. In Astrobiology (Vol. 10, Issue 5, pp. 463–473). Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA . https://doi.org/10.1089/ast.2009.0415

Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., Kunzmann, V., Losch, F., & Curio, G. (2006). The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 147–152. https://doi.org/10.1109/TNSRE.2006.875557

Chancellor, J. C., Scott, G. B. I., & Sutton, J. P. (2014). Space radiation: The number one risk to astronaut health beyond low earth orbit. Life, 4(3), 491–510. https://doi.org/10.3390/life4030491

Chatterjee, I. (2018). Mean deviation based identification of activated voxels from time-series fMRI data of schizophrenia patients. F1000Research, 7, 1615. https://doi.org/10.12688/f1000research.16405.2

Chatterjee, I., Agarwal, M., Rana, B., Lakhyani, N., & Kumar, N. (2018). Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimedia Tools and Applications, 77(20), 26991–27015. https://doi.org/10.1007/s11042-018-5901-0

Chatterjee, I., Kumar, V., Rana, B., Agarwal, M., & Kumar, N. (2020a). Identification of changes in grey matter volume using an evolutionary approach: an MRI study of schizophrenia. Multimedia Systems, 26(4), 383–396. https://doi.org/10.1007/s00530-020-00649-6

Chatterjee, I., Kumar, V., Rana, B., Agarwal, M., & Kumar, N. (2020b). Impact of ageing on the brain regions of the schizophrenia patients: an fMRI study using evolutionary approach. Multimedia Tools and Applications, 79(33–34), 24757–24779. https://doi.org/10.1007/s11042-020-09183-z

Chatterjee, I., Kumar, V., Sharma, S., Dhingra, D., Rana, B., Agarwal, M., & Kumar, N. (2019). Identification of brain regions associated with working memory deficit in schizophrenia [version 1; peer review: 2 approved]. F1000Research, 8. https://doi.org/10.12688/f1000research.17731.1

Colucci, S., Colaianni, G., Brunetti, G., Ferranti, F., Mascetti, G., Mori, G., & Grano, M. (2020). Irisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 mission. FASEB Journal, 34(8), 10096–10106. https://doi.org/10.1096/fj.202000216R

Crist, R. (2021). Starlink explained: Everything you should know about Elon Musk’s satellite internet venture. CNET. https://www.cnet.com/home/internet/starlink-satellite-internet-explained/

Crucian, B. E., Makedonas, G., Sams, C. F., Pierson, D. L., Simpson, R., Stowe, R. P., Smith, S. M., Zwart, S. R., Krieger, S. S., Rooney, B., Douglas, G., Downs, M., Nelman-Gonzalez, M., Williams, T. J., & Mehta, S. (2020). Countermeasures-based Improvements in Stress, Immune System Dysregulation and Latent Herpesvirus Reactivation onboard the International Space Station – Relevance for Deep Space Missions and Terrestrial Medicine. Neuroscience and Biobehavioral Reviews, 115, 68–76. https://doi.org/10.1016/j.neubiorev.2020.05.007

da Silva-Sauer, L., Valero-Aguayo, L., de la Torre-Luque, A., Ron-Angevin, R., & Varona-Moya, S. (2016). Concentration on performance with P300-based BCI systems: A matter of interface features. Applied Ergonomics, 52, 325–332. https://doi.org/10.1016/j.apergo.2015.08.002

De Negueruela, C., Broschart, M., Menon, C., & Del R. Millán, J. (2011). Brain-computer interfaces for space applications. Personal and Ubiquitous Computing, 15(5), 527–537. https://doi.org/10.1007/s00779-010-0322-8

Demertzi, A., Van Ombergen, A., Tomilovskaya, E., Jeurissen, B., Pechenkova, E., Di Perri, C., Litvinova, L., Amico, E., Rumshiskaya, A., Rukavishnikov, I., Sijbers, J., Sinitsyn, V., Kozlovskaya, I. B., Sunaert, S., Parizel, P. M., Van de Heyning, P. H., Laureys, S., & Wuyts, F. L. (2016). Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Structure and Function, 221(5), 2873–2876. https://doi.org/10.1007/s00429-015-1054-3

Hochleitner, G., Tonckens, Lunsingh Nicolette Lähdemaa, J., Kern, J., & Zhong, M.-A. (2020). PwC Megatrend Analysis: SpaceX (Issue February). https://doi.org/10.13140/RG.2.2.26491.34089

Homick, J. L., Delaney, P., & Rodda, K. (1998). Overview of the Neurolab Spacelab mission. Acta Astronautica, 42(1–8), 69–87. https://doi.org/10.1016/S0094-5765(98)00107-6

Katyal, A., & Singla, R. (2020). Towards enhanced information transfer rate: a comparative study based on classification techniques. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 8(4), 446–457. https://doi.org/10.1080/21681163.2020.1727775

Khossravi, E. A., & Hargens, A. R. (2021). Visual disturbances during prolonged space missions. Current Opinion in Ophthalmology, 32(1), 69–73. https://doi.org/10.1097/ICU.0000000000000724

Lan, M., Phillips, S. D., Archambault-Leger, V., Chepko, A. B., Lu, R., Anderson, A. P., Masterova, K. S., Fellows, A. M., Halter, R. J., & Buckey, J. C. (2021). Proposed mechanism for reduced jugular vein flow in microgravity. Physiological Reports, 9(8), e14782. https://doi.org/10.14814/phy2.14782

Mahoney, E. (2019). Spacesuit Basics. http://www.nasa.gov/feature/spacewalk-spacesuit-basics

Maida, J. (2020). Global Neuroscience Antibodies and Assays Market Analysis Report 2020-2024 - Industry Growth Rate Projection With CAGR of Over 8% and Current Trends, Share, Size, Top Players With Its Type and Applications | Technavio. Business Wire. https://www.businesswire.com/news/home/20201105005767/en/Global-Neuroscience-Antibodies-and-Assays-Market-Analysis-Report-2020-2024---Industry-Growth-Rate-Projection-With-CAGR-of-Over-8-and-Current-Trends-Share-Size-Top-Players-With-Its-Type-and-Applicati

Mathangasinghe, Y., & Samaranayake, U. M. J. E. (2019). A brief history of neuroscience. Sri Lanka Anatomy Journal, 3(2), 72. https://doi.org/10.4038/slaj.v3i2.65

May, S. (2020). What Is the Commercial Crew Program? http://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-the-commercial-crew-program.html

Millàn, J. del R., Ferrez, P. W., & Seidl, T. (2009). Chapter 14 Validation of Brain-Machine Interfaces During Parabolic Flight. International Review of Neurobiology, 86, 189–197. https://doi.org/10.1016/S0074-7742(09)86014-5

Musk, E. (2019). An integrated brain-machine interface platform with thousands of channels. Journal of Medical Internet Research, 21(10), e16194. https://doi.org/10.2196/16194

Oktar, N. (2006). Theory of Neuroscience. J Neurol Sci Turk, 23(3), 155–158.

Parikh, D., & George, K. (2020). Quadcopter Control in Three-Dimensional Space Using SSVEP and Motor Imagery-Based Brain-Computer Interface. 11th Annual IEEE Information Technology, Electronics and Mobile Communication Conference, IEMCON 2020, 782–785. https://doi.org/10.1109/IEMCON51383.2020.9284924

Poli, R., Cinel, C., Matran-Fernandez, A., Sepulveda, F., & Stoica, A. (2013). Towards cooperative brain-computer interfaces for space navigation. International Conference on Intelligent User Interfaces, Proceedings IUI, 149–159. https://doi.org/10.1145/2449396.2449417

Rappaport, M. B., Szocik, K., & Corbally, C. (2020). Neuroplasticity as a foundation for human enhancements in space. Acta Astronautica, 175, 438–446. https://doi.org/10.1016/j.actaastro.2020.06.011

Roda, A., Mirasoli, M., Guardigli, M., Zangheri, M., Caliceti, C., Calabria, D., & Simoni, P. (2018). Advanced biosensors for monitoring astronauts’ health during long-duration space missions. Biosensors and Bioelectronics, 111, 18–26. https://doi.org/10.1016/j.bios.2018.03.062

Rodgers, K., & Xiong, S. (1997). Effect of Administration of Malathion for 14 Days on Macrophage Function and Mast Cell Degranulation. Toxicological Sciences, 37(1), 95–99. https://doi.org/10.1093/toxsci/37.1.95

Rossini, L., Izzo, D., & Summerer, L. (2009). Brain-machine interfaces for space applications. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 520–523. https://doi.org/10.1109/IEMBS.2009.5333678

Squire, L. R., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (2012). Fundamental Neuroscience: Fourth Edition. In Fundamental Neuroscience: Fourth Edition. Elsevier Inc. https://doi.org/10.1016/C2010-0-65035-8

Stahnisch, F. W. (2016). Learning soft skills the hard way: Historiographical considerations on the cultural adjustment process of German-speaking émigré neuroscientists in Canada, 1933 to 1963. Journal of the History of the Neurosciences, 25(3), 299–319. https://doi.org/10.1080/0964704X.2015.1121697

Tekieh, T., Lockley, S. W., Robinson, P. A., McCloskey, S., Zobaer, M. S., & Postnova, S. (2020). Modeling melanopsin-mediated effects of light on circadian phase, melatonin suppression, and subjective sleepiness. Journal of Pineal Research, 69(3), e12681. https://doi.org/10.1111/jpi.12681

Van Ombergen, A., Demertzi, A., Tomilovskaya, E., Jeurissen, B., Sijbers, J., Kozlovskaya, I. B., Parizel, P. M., Van de Heyning, P. H., Sunaert, S., Laureys, S., & Wuyts, F. L. (2017). The effect of spaceflight and microgravity on the human brain. Journal of Neurology, 264(1), 18–22. https://doi.org/10.1007/s00415-017-8427-x

Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., & Vaughan, T. M. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164–173. https://doi.org/10.1109/TRE.2000.847807

Zobaer, M. S., Robinson, P. A., & Kerr, C. C. (2018). Physiology-based ERPs in normal and abnormal states. Biological Cybernetics, 112(5), 465–482. https://doi.org/10.1007/s00422-018-0766-x

Downloads

Published

2021-06-02

How to Cite

Hummadi, T. and Chatterjee, I. (2021) “An era of brain-computer interface: BCI migration into space”, Neuroscience Research Notes, 3(5), pp. 4–12. doi: 10.31117/neuroscirn.v3i5.68.

Similar Articles

You may also start an advanced similarity search for this article.