Improved β-catenin detection in spinal cord tissue sections: autofluorescence quenching
DOI:
https://doi.org/10.31117/neuroscirn.v3i2.49Keywords:
spinal cord, β-catenin, autofluorescence quenching, regenerationAbstract
Experimental studies on spinal cord regeneration are focusing on the windows of opportunity to improve spinal cord microenvironment via spinal-centric repair pathways. One pathway of particular interest is the Wnt/β-catenin signalling pathway which plays a vital role in axonal guidance, synaptic assembly and function, neuronal survival and connectivity after spinal cord trauma to induce repair. Upregulation of β-catenin expression is often taken as evidence of regeneration mechanisms through the Wnt/ β-catenin pathway. However, these studies may not have optimised the staining protocol for β-catenin to enable accurate detection of the protein. Given possible issues with the background or endogenous tissue autofluorescence, there is a need to optimise the protocol further to allow better visualisation of β-catenin. So far, there are no studies which report optimising spinal cord tissues for β-catenin to reduce autofluorescence, and as β-catenin is widely used in spinal cord injury (SCI) and other spinal cord tissue studies, thus it is an important issue to address. To achieve reliable detection and localisation of β-catenin, we utilised sequential quenching techniques using 1% NaBH4 and 1mM CuSO4 in 50mM ammonium acetate buffer to reduce both background and fixative-induced autofluorescence. Our results showed that sequential autofluorescence quenching is crucial in β-catenin detection, and this improved technique indicates that β-catenin is localised in the spinal cord white matter regions. Objective approach for the β-catenin localisation is highly significant as it unravelled an objective identification and illuminate the pattern of distribution of β-catenin for researcher focusing on spinal cord repair studies via the Wnt/β-catenin pathway following SCI.
References
Ahmad-Annuar, A., Ciani, L., Simeonidis, I., Herreros, J., Fredj, N. B., Rosso, S. B., Hall, A. & Salinas, P. C. (2006). Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. Journal of Cell Biology, 174(1), 127-139. https://doi.org/10.1083/jcb.200511054
Barker, N., & Born, M. V. D. (2008). Detection of β-catenin localization by immunohistochemistry. Methods in Molecular Biology, 468, 91-98. https://doi.org/10.1007/978-1-59745-249-6_7
Ciani, L., & Salinas, P. C. (2005). WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature Reviews Neuroscience, 6(5), 351-362. https://doi.org/10.1038/nrn1665
Clancy, B., & Cauller, L. (1998). Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. Journal of Neuroscience Methods, 83(2), 97-102. https://doi.org/10.1016/s0165-0270(98)00066-1
Curinga, G., & Smith, G. M. (2008). Molecular/genetic manipulation of extrinsic axon guidance factors for CNS repair and regeneration. Experimental Neurology, 209(2), 333-342. https://doi.org/10.1016/j.expneurol.2007.06.026
Cuzzocrea, S., Genovese, T., Mazzon, E., Crisafulli, C., Di Paola, R., Muià, C., Collin, M., Esposito, E., Bramanti, P. & Thiemermann, C. (2006). Glycogen synthase kinase-3β inhibition reduces secondary damage in experimental spinal cord trauma. Journal of Pharmacology and Experimental Therapeutics, 318(1), 79-89. https://doi.org/10.1124/jpet.106.102863
Davis, A. S., Richter, A., Becker, S., Moyer, J. E., Sandouk, A., Skinner, J., & Taubenberger, J. K. (2014). Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. Journal of Histochemistry and Cytochemistry, 62(6), 405-423. https://doi.org/10.1369/0022155414531549
Deyl, Z., Macek, K., Adam, M., & Vancikova. (1980). Studies on the chemical nature of elastin fluorescence. Biochimica et Biophysica Acta, 625(2), 248-254. https://doi.org/10.1016/0005-2795(80)90288-3
Dill, J., Wang, H., Zhou, F., & Li, S. (2008). Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. Journal of Neuroscience, 28(36), 8914-8928. https://doi.org/10.1523/jneurosci.1178-08.2008
Gage, G. J., Kipke, D. R., & Shain, W. (2012). Whole animal perfusion fixation for rodents. JoVE (Journal of Visualized Experiments) (65), 3564. https://doi.org/10.3791/3564
Gao, K., & Zhang, Y. (2018). Effect and molecular mechanism of wnt/β-catenin signaling pathway on apoptosis after spinal cord injury. Journal of Surgery, 6(1), 3. https://doi.org/10.13188/2332-4139.1000042
Gao, K., Shen, Z., Yuan, Y., Han, D., Song, C., Guo, Y., & Mei, X. (2016). Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β‐catenin signaling pathway after spinal cord injury. Journal of Neurochemistry, 138(1), 139-149. https://doi.org/10.1111/jnc.13382
Gao, K., Wang, Y.S., Yuan, Y.J., Wan, Z.H., Yao, T.C., Li, H.H., Tang, P.F. & Mei, X.F. (2015). Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway. Neural Regeneration Research, 10(6), 951-957. https://doi.org/10.4103/1673-5374.158360
Kiernan, J., & Wessendorf, M. (2001). Autofluorescence: Causes and cures. Toronto Western Research Institute, http://www.uhnresearch.ca/wcif
Liu, Y., Wang, X., Lu, C. C., Kerman, R., Steward, O., Xu, X. M., & Zou, Y. (2008). Repulsive Wnt signaling inhibits axon regeneration after CNS injury. Journal of Neuroscience, 28(33), 8376-8382. https://doi.org/10.1523/jneurosci.1939-08.2008
Lu, G. B., Niu, F. W., Zhang, Y. C., Du, L., Liang, Z. Y., Gao, Y., Yan, T. Z., Nie, Z. K. & Gao, K. (2016). Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation. Neural Regeneration Research, 11(11), 1816-1823. https://dx.doi.org/10.4103%2F1673-5374.194753
Ma, W., Yang, J. W., Gao, Y., Luo, T., Cheng, J. R., Wang, D. Y., Guo, J. H. & Li, L. (2015). Expression pattern of β-catenin during the development of human fetal spinal cord. Romanian Journal of Morphology and Embryology, 56(2 Suppl), 697-701.
Monici, M. (2005). Cell and tissue autofluorescence research and diagnostic applications. Biotechnology annual review, 11, 227-256. http://doi.org/10.1016/S1387-2656(05)11007-2
Mosiman, V. L., Patterson, B. K., Canterero, L., & Goolsby, C. L. (1997). Reducing cellular autofluorescence in flow cytometry: an in situ method. Cytometry, 30(3), 151-156. https://doi.org/10.1002/(SICI)1097-0320(19970615)30:3%3C151::AID-CYTO6%3E3.0.CO;2-O
Romijn, H. J., van Uum, J. F., Breedijk, I., Emmering, J., Radu, I., & Pool, C. W. (1999). Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. Journal of Histochemistry & Cytochemistry, 47(2), 229-236. https://doi.org/10.1177/002215549904700211
Santer, R., Partanen, M., & Hervonen, A. (1980). Glyoxylic acid fluorescence and ultrastructural studies of neurones in the coeliac-superior mesenteric ganglion of the aged rat. Cell and Tissue Research, 211(3), 475-485. https://doi.org/10.1007/bf00234401
Schnell, S. A., Staines, W. A., & Wessendorf, M. W. (1999). Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. Journal of Histochemistry & Cytochemistry, 47(6), 719-730. https://doi.org/10.1177/002215549904700601
Shen, Z., Zhou, Z., Gao, S., Guo, Y., Gao, K., Wang, H., & Dang, X. (2017). Melatonin inhibits neural cell apoptosis and promotes locomotor recovery via activation of the Wnt/β-catenin signaling pathway after spinal cord injury. Neurochemical Research, 42(8), 2336-2343. https://doi.org/10.1007/s11064-017-2251-7
Spitzer, N., Sammons, G. S., & Price, E. M. (2011). Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. Journal of Neuroscience Methods, 197(1), 48-55. https://doi.org/10.1016/j.jneumeth.2011.01.029
Suh, H. I., Min, J., Choi, K. H., Kim, S. W., Kim, K. S., & Jeon, S. R. (2011). Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta Neurochirurgica, 153(5), 1003-1010. https://doi.org/10.1007/s00701-011-0945-1
Sun, Y., & Chakrabartty, A. (2016). Cost-effective elimination of lipofuscin fluorescence from formalin-fixed brain tissue by white phosphor light emitting diode array. Biochemistry and Cell Biology, 94(6), 545-550. https://doi.org/10.1139/bcb-2016-0125
Tural Emon, S., Uslu, S., Ilgaz Aydinlar, E., Irban, A., Ince, U., Orakdogen, M., & Gulec Suyen, G. (2017). Effects of ozone on spinal cord recovery via the wnt/β-catenin pathway following spinal cord injury in rats. Turkish Neurosurgery, 27(6), 946-951. https://doi.org/10.5137/1019-5149.JTN.17508-16.1
van Amerongen, R., Mikels, A., & Nusse, R. (2008). Alternative Wnt signaling is initiated by distinct receptors. Science Signaling, 1(35), re9. https://doi.org/10.1126/scisignal.135re9
Willingham, M. C. (1983). An alternative fixation-processing method for preembedding ultrastructural immunocytochemistry of cytoplasmic antigens: The GBS (glutaraldehyde-borohydride-saponin) procedure. Journal of Histochemistry and Cytochemistry, 31(6), 791-798. https://doi.org/10.1177/31.6.6404984
Yin, Z. S., Zu, B., Chang, J., & Zhang, H. (2008). Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurological Research, 30(5), 480-486. https://doi.org/10.1179/174313208X284133
Zhang, Y. K., Huang, Z. J., Liu, S., Liu, Y. P., Song, A. A., & Song, X. J. (2013). WNT signaling underlies the pathogenesis of neuropathic pain in rodents. Journal of Clinical Investigation, 123(5), 2268-2286. https://doi.org/10.1172/JCI65364
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Dauda Abdullahi, Associate Professor Dr., Associate Professor Dr.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.