Neurocognitive interventions based on network neuroscience may break the cycle of drug addiction relapse

Authors

  • Kavinash Loganathan Center for Intelligent Signal & Imaging, Universiti Teknologi PETRONAS, Perak, Malaysia.
  • Eric Tatt Wei Ho (1) Center for Intelligent Signal & Imaging and (2) Department of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Perak, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v3i2.48

Keywords:

addiction relapse, network neuroscience, cognitive intervention, pharmacological substitution therapy, drug addiction

Abstract

In Malaysia, abstinence-centric programs failed to reduce drug use and stem the spread of HIV. The Malaysian government shifted its focus to implement harm reduction strategies with methadone maintenance therapy (MMT), in particular proving to be effective in improving the overall health and well-being of people who inject drugs (PWIDs). Despite this success, MMT retention rates remain low, as methadone is only able to stall drug consumption, but not stop it completely. Neuroimaging research revealed that PWIDs enrolled in MMT still display addictive behavior, including drug cue sensitivity, craving, and withdrawal, despite treatment adherence. Brain activity amongst treated PWIDs continues to bear similarities to untreated individuals, as they struggle with cognitive impairments and poor self-control. Findings from the emerging field of network neuroscience could provide fresh insight into the mechanics of addiction, especially the impact of substance abuse on brain-wide cognitive networks. Concurrently, the development of non-intrusive cognitive interventions, such as neurofeedback and transcranial magnetic stimulation, shows promise to reprogram a person's patterns of brain activity, including those regulated by large-scale networks, to a state resembling normalcy. We highlight the importance of relapse in the life-long rehabilitation of substance abuse. The lack of treatment options to handle relapse after successful harm-reduction policies is due to the absence of a conceptual framework to reason about interventions. We review recent research in the new field of network neuroscience, which suggests that altered brain activity due to drug addiction underlies the propensity for relapse and that this dysfunction is not addressed in drug rehabilitation programs. We hypothesize that non-invasive, non-pharmacological cognitive interventions based on network neuroscience to correct brain activity dysfunction associated with addiction are potential therapies to treat drug addiction relapse. In complement with medicine-substitution-based therapies, we hope this approach will finally break the cycle of addiction.

References

Alexandrescu, L. (2017). NPS and the methadone queue: Spillages of space and time. International Journal on Drug Policy, 40, 50-56. https://doi.org/10.1016/j.drugpo.2016.09.009

Ali, N., Aziz, S. A., Nordin, S., Mi, N. C., Abdullah, N., Paranthaman, V., Mahmud, M., Yee, A., & Danaee, M. (2018). Evaluation of methadone treatment in malaysia: findings from the Malaysian methadone treatment outcome study (MyTOS). Substance Use & Misuse, 53(2), 239-248. https://doi.org/10.1080/10826084.2017.1385630

Bachireddy, C., Bazazi, A. R., Kavasery, R., Govindasamy, S., Kamarulzaman, A., & Altice, F. L. (2011). Attitudes toward opioid substitution therapy and pre-incarceration HIV transmission behaviors among HIV-infected prisoners in Malaysia: implications for secondary prevention. Drug and Alcohol Dependence, 116(1-3), 151-157. https://doi.org/10.1016/j.drugalcdep.2010.12.001

Baharom, N., Hassan, M. R., Ali, N., & Shah, S. A. (2012). Improvement of quality of life following 6 months of methadone maintenance therapy in Malaysia. Substance Abuse Treatment, Prevention, and Policy, 7, 32. https://doi.org/10.1186/1747-597X-7-32

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353-364. https://doi.org/10.1038/nn.4502

Belin, D., Belin-Rauscent, A., Murray, J. E., & Everitt, B. J. (2013). Addiction: failure of control over maladaptive incentive habits. Current Opinion in Neurobiology, 23(4), 564-572. https://doi.org/10.1016/j.conb.2013.01.025

Bellamoli, E., Manganotti, P., Schwartz, R. P., Rimondo, C., Gomma, M., & Serpelloni, G. (2014). rTMS in the treatment of drug addiction: an update about human studies. Behavioural Neurology, 2014, 815215. https://doi.org/10.1155/2014/815215

Bonny-Noach, H. (2019). Harm reduction drug policy in Israel: what has been accomplished and what still needs to be done? Israel Journal of Health Policy Research, 8(1), 75. https://doi.org/10.1186/s13584-019-0343-3

Chang, H., Li, W., Li, Q., Chen, J., Zhu, J., Ye, J., Liu, J., Li, Z., Li, Y., Shi, M., Wang, Y., & Wang, W. (2016). Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study. BMC Neurology, 16(1), 145. https://doi.org/10.1186/s12883-016-0659-3

Chawarski, M. C., Vicknasingam, B., Mazlan, M., & Schottenfeld, R. S. (2012). Lifetime ATS use and increased HIV risk among not-in-treatment opiate injectors in Malaysia. Drug and Alcohol Dependence, 124(1-2), 177-180. https://doi.org/10.1016/j.drugalcdep.2011.12.024

Chie, Q. T., Tam, C. L., Bonn, G., Wong, C. P., Dang, H. M., & Khairuddin, R. (2015). Drug abuse, relapse, and prevention education in malaysia: perspective of university students through a mixed methods approach. Frontiers in Psychiatry, 6, 65. https://doi.org/10.3389/fpsyt.2015.00065

Choo, M. K. K., El-Bassel, N., Adam, P. C. G., Gilbert, L., Wu, E., West, B. S., Bazazi, A. R., De Wit, J. B. F., Ismail, R., & Kamarulzaman, A. (2015). Prevalence and Correlates of HIV and Hepatitis C Virus Infections and Risk Behaviors among Malaysian Fishermen. PloS One, 10(8), e0118422. https://doi.org/10.1371/journal.pone.0118422

Clark, C. B., Hendricks, P. S., Lane, P. S., Trent, L., & Cropsey, K. L. (2014). Methadone maintenance treatment may improve completion rates and delay opioid relapse for opioid dependent individuals under community corrections supervision. Addictive Behaviors, 39(12), 1736-1740. https://doi.org/10.1016/j.addbeh.2014.07.011

Dehghani-Arani, F., Rostami, R., & Nadali, H. (2013). Neurofeedback training for opiate addiction: improvement of mental health and craving. Applied Psychophysiology and Biofeedback, 38(2), 133-141. https://doi.org/10.1007/s10484-013-9218-5

Desrosiers, A., Chooi, W.-T., Zaharim, N. M., Ahmad, I., Mohd Yasin, M. A., Syed Jaapar, S. Z., Schottenfeld, R. S., Vicknasingam, B., & Chawarski, M. C. (2016). Emerging Drug Use Trends in Kelantan, Malaysia. Journal of Psychoactive Drugs, 48(3), 218-226. https://doi.org/10.1080/02791072.2016.1185553

Diana, M., Raij, T., Melis, M., Nummenmaa, A., Leggio, L., & Bonci, A. (2017). Rehabilitating the addicted brain with transcranial magnetic stimulation. Nature Reviews. Neuroscience, 18(11), 685-693. https://doi.org/10.1038/nrn.2017.113

Donny, E. C., Walsh, S. L., Bigelow, G. E., Eissenberg, T., & Stitzer, M. L. (2002). High-dose methadone produces superior opioid blockade and comparable withdrawal suppression to lower doses in opioid-dependent humans. Psychopharmacology, 161(2), 202-212. https://doi.org/10.1007/s00213-002-1027-0

Ekhtiari, H., Nasseri, P., Yavari, F., Mokri, A., & Monterosso, J. (2016). Neuroscience of drug craving for addiction medicine: From circuits to therapies. Progress in Brain Research, 223, 115-141. https://doi.org/10.1016/bs.pbr.2015.10.002

Evans, C. J., & Cahill, C. M. (2016). Neurobiology of opioid dependence in creating addiction vulnerability. F1000Research, 5. https://doi.org/10.12688/f1000research.8369.1

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700-711. https://doi.org/10.1038/nrn2201

Garland, E. L., & Howard, M. O. (2018). Mindfulness-based treatment of addiction: current state of the field and envisioning the next wave of research. Addiction Science & Clinical Practice, 13(1), 14. https://doi.org/10.1186/s13722-018-0115-3

Gradin, V. B., Baldacchino, A., Balfour, D., Matthews, K., & Steele, J. D. (2014). Abnormal brain activity during a reward and loss task in opiate-dependent patients receiving methadone maintenance therapy. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 39(4), 885-894. https://doi.org/10.1038/npp.2013.289

Ilgen, M., Jain, A., Kim, H. M., & Trafton, J. A. (2008). The effect of stress on craving for methadone depends on the timing of last methadone dose. Behaviour Research and Therapy, 46(10), 1170-1175. https://doi.org/10.1016/j.brat.2008.05.013

Janes, A. C., Farmer, S., Peechatka, A. L., Frederick, B. de B., & Lukas, S. E. (2015). Insula-Dorsal Anterior Cingulate Cortex Coupling is Associated with Enhanced Brain Reactivity to Smoking Cues. Neuropsychopharmacology, 40(7), 1561-1568. https://doi.org/10.1038/npp.2015.9

Joseph, H., Stancliff, S., & Langrod, J. (2000). Methadone maintenance treatment (MMT): a review of historical and clinical issues. Mount Sinai Journal of Medicine, 67(5-6), 347-364.

Langleben, D. D., Ruparel, K., Elman, I., Busch-Winokur, S., Pratiwadi, R., Loughead, J., O'Brien, C. P., & Childress, A. R. (2008). Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. American Journal of Psychiatry, 165(3), 390-394. https://doi.org/10.1176/appi.ajp.2007.07010070

Lazzaro, V. Di, Ziemann, U., & Lemon, R. N. (2008). State of the art: Physiology of transcranial motor cortex stimulation. Brain Stimulation, 1(4), 345-362. https://doi.org/10.1016/j.brs.2008.07.004

Li, Q., Liu, J., Wang, W., Wang, Y., Li, W., Chen, J., Zhu, J., Yan, X., Li, Y., Li, Z., Ye, J., & Wang, W. (2018). Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men. Journal of Psychiatry & Neuroscience, 42(1), 48-57. https://doi.org/10.1503/jpn.170011

Li, W., Li, Q., Wang, D., Xiao, W., Liu, K., Shi, L., Zhu, J., Li, Y., Yan, X., Chen, J., Ye, J., Li, Z., Wang, Y., & Wang, W. (2015). Dysfunctional default mode network in methadone treated patients who have a higher heroin relapse risk. Scientific Reports, 5, 15181. https://doi.org/10.1038/srep15181

Ma, N., Liu, Y., Fu, X.-M., Li, N., Wang, C.-X., Zhang, H., Qian, R.-B., Xu, H.-S., Hu, X., & Zhang, D.-R. (2011). Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One, 6(1), e16560. https://doi.org/10.1371/journal.pone.0016560

Magor-Blatch, L. (2013). Intervention for Amphetamine-type Stimulant (ATS) Use in the Therapeutic Community. University of New South Wales.

Magor-Blatch, L. E., Keen, J. L., & Bhullar, N. (2014). Personality factors as predictors of programme completion of drug therapeutic communities. Mental Health and Substance Use, 7(2), 110-124. https://doi.org/10.1080/17523281.2013.806345

Marvel, C. L., Faulkner, M. L., Strain, E. C., Mintzer, M. Z., & Desmond, J. E. (2012). An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients. Cerebellum, 11(1), 300-310. https://doi.org/10.1007/s12311-011-0311-0

Mazlan, M., Schottenfeld, R. S., & Chawarski, M. C. (2006). New challenges and opportunities in managing substance abuse in Malaysia. Drug and Alcohol Review, 25(5), 473-478. https://doi.org/10.1080/09595230600883354

McKetin, R., Kozel, N., Douglas, J., Ali, R., Vicknasingam, B., Lund, J., & Li, J.-H. (2008). The rise of methamphetamine in Southeast and East Asia. Drug and Alcohol Review, 27(3), 220-228. https://doi.org/10.1080/09595230801923710

Mukherjee, T. I., Wickersham, J. A., Desai, M. M., Pillai, V., Kamarulzaman, A., & Altice, F. L. (2016). Factors associated with interest in receiving prison-based methadone maintenance therapy in Malaysia. Drug and Alcohol Dependence, 164, 120-127. https://doi.org/10.1016/j.drugalcdep.2016.04.037

Musa, R., Abu Bakar, A. Z., & Ali Khan, U. (2012). Two-year outcomes of methadone maintenance therapy at a clinic in Malaysia. Asia-Pacific Journal of Public Health, 24(5), 826-832. https://doi.org/10.1177/1010539511404396

Naji, L., Dennis, B. B., Bawor, M., Plater, C., Pare, G., Worster, A., Varenbut, M., Daiter, J., Marsh, D. C., Desai, D., Thabane, L., & Samaan, Z. (2016). A prospective study to investigate predictors of relapse among patients with opioid use disorder treated with methadone. Substance Abuse: Research and Treatment, 10, 9-18. https://doi.org/10.4137/SART.S37030

Naning, H., Kerr, C., Kamarulzaman, A., Osornprasop, S., Dahlui, M., Ng, C.-W., & Wilson, D. P. (2014). Return on investment and cost-effectiveness of harm reduction program in Malaysia. Directions in development; human development. Washington, DC: World Bank Group. http://documents.worldbank.org/curated/en/310381468282285702/Return-on-investment-and-cost-effectiveness-of-harm-reduction-program-in-Malaysia

Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., Schmahl, C., Theberge, J., Ros, T., Neufeld, R. W. J., McKinnon, M. C., Reiss, J. P., Jetly, R., & Lanius, R. A. (2018). Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: A preliminary analysis. Human Brain Mapping, 39(11), 4258-4275. https://doi.org/10.1002/hbm.24244

Noori, R., Daneshmand, R., Farhoudian, A., Ghaderi, S., Aryanfard, S., & Moradi, A. (2016). Amphetamine-type stimulants in a group of adults in Tehran, Iran: a rapid situation assessment in twenty-two districts. Iranian Journal of Psychiatry and Behavioral Sciences, 10(4), e7704. https://doi.org/10.17795/ijpbs-7704

Politi, E., Fauci, E., Santoro, A., & Smeraldi, E. (2008). Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. American Journal on Addictions, 17(4), 345-346. https://doi.org/10.1080/10550490802139283

Ramli, M., Zafri, A. B., Junid, M. R., & Hatta, S. (2012). Associated risk factors to non-compliance to methadone maintenance therapy. Medical Journal of Malaysia, 67(6), 560-564.

Rapinesi, C., Del Casale, A., Di Pietro, S., Ferri, V. R., Piacentino, D., Sani, G., Raccah, R. N., Zangen, A., Ferracuti, S., Vento, A. E., Angeletti, G., Brugnoli, R., Kotzalidis, G. D., & Girardi, P. (2016). Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder. Neuroscience Letters, 629, 43-47. https://doi.org/https://doi.org/10.1016/j.neulet.2016.06.049

Rezapour, T., Hatami, J., Farhoudian, A., Sofuoglu, M., Noroozi, A., Daneshmand, R., Samiei, A., & Ekhtiari, H. (2017). Cognitive rehabilitation for individuals with opioid use disorder: A randomized controlled trial. Neuropsychological Rehabilitation, 1-17. https://doi.org/10.1080/09602011.2017.1391103

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349-2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007

Shen, Y., Cao, X., Tan, T., Shan, C., Wang, Y., Pan, J., He, H., & Yuan, T.-F. (2016). 10-Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biological Psychiatry, 80(3), e13-14. https://doi.org/10.1016/j.biopsych.2016.02.006

Singh, D., Chawarski, M. C., Schottenfeld, R., & Vicknasingam, B. (2013). Substance abuse and the HIV situation in Malaysia. Journal of Food and Drug Analysis, 21(4), S46-S51. https://doi.org/10.1016/j.jfda.2013.09.033

Strasser, J., Wiesbeck, G. A., Meier, N., Stohler, R., & Dursteler-Macfarland, K. M. (2010). Effects of a single 50% extra dose of methadone on heroin craving and mood in lower- versus higher-dose methadone patients. Journal of Clinical Psychopharmacology, 30(4), 450-454. https://doi.org/10.1097/JCP.0b013e3181e6df49

Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: Lessons learned and a road ahead. NeuroImage, 62(4), 2281-2295. https://doi.org/10.1016/j.neuroimage.2012.01.117

Tang, Y.-Y., Tang, Y., Tang, R., & Lewis-Peacock, J. A. (2017). Brief Mental Training Reorganizes Large-Scale Brain Networks. Frontiers in Systems Neuroscience, 11, 6. https://doi.org/10.3389/fnsys.2017.00006

Tau, G. Z., Marsh, R., Wang, Z., Torres-Sanchez, T., Graniello, B., Hao, X., Xu, D., Packard, M. G., Duan, Y., Kangarlu, A., Martinez, D., & Peterson, B. S. (2014). Neural correlates of reward-based spatial learning in persons with cocaine dependence. Neuropsychopharmacology, 39(3), 545-555. https://doi.org/10.1038/npp.2013.189

Teoh, B. F., J., Yee, A., Habil, M. H. B., & Danaee, M. (2016). Effectiveness of methadone maintenance therapy and improvement in quality of life following a decade of implementation. Journal of Substance Abuse Treatment, 69, 50-56. https://doi.org/10.1016/j.jsat.2016.07.006

United Nations Office on Drugs and Crimes. (2010). World drug report. United Nations Publications.

van den Bos, W., & McClure, S. M. (2013). Towards a general model of temporal discounting. Journal of the Experimental Analysis of Behavior, 99(1), 58-73. https://doi.org/10.1002/jeab.6

Vicknasingam, B., & Mahmud, M. (2008). Malaysian drug treatment policy: An evolution from total abstinence to harm reduction. Malaysian Anti-Drugs Journal (Jurnal Antidadah Malaysia),(3), 107-121.

Vicknasingam, B., Mazlan, M., Schottenfeld, R. S., & Chawarski, M. C. (2010). Injection of buprenorphine and buprenorphine/naloxone tablets in Malaysia. Drug and Alcohol Dependence, 111(1-2), 44-49. https://doi.org/10.1016/j.drugalcdep.2010.03.014

Volkow, N. D., Koob, G. F., & McLellan, A. T. (2016). Neurobiologic advances from the brain disease model of addiction. New England Journal of Medicine, 374(4), 363-371. https://doi.org/10.1056/NEJMra1511480

Wang, L., Zou, F., Zhai, T., Lei, Y., Tan, S., Jin, X., Ye, E., Shao, Y., Yang, Y., & Yang, Z. (2016). Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years. Addiction Biology, 21(3), 646-656. https://doi.org/10.1111/adb.12228

Wang, R., Li, M., Zhao, M., Yu, D., Hu, Y., Wiers, C. E., Wang, G.-J., Volkow, N. D., & Yuan, K. (2018). Internet gaming disorder: deficits in functional and structural connectivity in the ventral tegmental area-Accumbens pathway. Brain Imaging and Behavior, 13, 1172–1181. https://doi.org/10.1007/s11682-018-9929-6

Wegman, M. P., Altice, F. L., Kaur, S., Rajandaran, V., Osornprasop, S., Wilson, D., Wilson, D. P., & Kamarulzaman, A. (2017). Relapse to opioid use in opioid-dependent individuals released from compulsory drug detention centres compared with those from voluntary methadone treatment centres in Malaysia: a two-arm, prospective observational study. The Lancet. Global Health, 5(2), e198-e207. https://doi.org/10.1016/S2214-109X(16)30303-5

Wickersham, J. A., Zahari, M. M., Azar, M. M., Kamarulzaman, A., & Altice, F. L. (2013). Methadone dose at the time of release from prison significantly influences retention in treatment: implications from a pilot study of HIV-infected prisoners transitioning to the community in Malaysia. Drug and Alcohol Dependence, 132(1-2), 378-382. https://doi.org/10.1016/j.drugalcdep.2013.01.005

Wu, X.-Q., Zan, G.-Y., Ju, Y.-Y., Chen, T.-Z., Guo, L.-B., Jiao, D.-L., Jiang, H.-F., Deng, Y.-Z., Liu, J.-G., & Zhao, M. (2018). Low-frequency repetitive transcranial magnetic stimulation inhibits the development of methamphetamine-induced conditioned place preference. Behavioural Brain Research, 353, 129-136. https://doi.org/10.1016/j.bbr.2018.07.004

Xie, C., Shao, Y., Ma, L., Zhai, T., Ye, E., Fu, L., Bi, G., Chen, G., Cohen, A., Li, W., Chen, G., Yang, Z., & Li, S.-J. (2014). Imbalanced functional link between valuation networks in abstinent heroin-dependent subjects. Molecular Psychiatry, 19(1), 10-12. https://doi.org/10.1038/mp.2012.169

Ye, J.-J., Li, W., Zhang, D.-S., Li, Q., Zhu, J., Chen, J.-J., Li, Y.-B., Yan, X.-J., Liu, J.-R., Wei, X., Wang, Y.-R., & Wang, W. (2018). Longitudinal behavioral and fMRI-based assessment of inhibitory control in heroin addicts on methadone maintenance treatment. Experimental and Therapeutic Medicine, 16(4), 3202-3210. https://doi.org/10.3892/etm.2018.6571

Zhai, T., Shao, Y., Chen, G., Ye, E., Ma, L., Wang, L., Lei, Y., Chen, G., Li, W., Zou, F., Jin, X., Li, S.-J., & Yang, Z. (2015). Nature of functional links in valuation networks differentiates impulsive behaviors between abstinent heroin-dependent subjects and nondrug-using subjects. NeuroImage, 115, 76-84. https://doi.org/10.1016/j.neuroimage.2015.04.060

Zhang, L., Bao, J., Harrington, A., Fan, X., Ning, Z., Zhang, J., Shi, D., Hu, M., Zhou, Z., Cai, Z., Zhao, M., & Du, J. (2019). Mixed methods to explore factors associated with the decline of patients in the methadone maintenance treatment program in Shanghai, China. Harm Reduction Journal, 16(1), 34. https://doi.org/10.1186/s12954-019-0304-8

Zhang, X.-D., Kelly-Hanku, A., Chai, J.-J., Luo, J., Temmerman, M., & Luchters, S. (2015). Sexual and reproductive health risks amongst female adolescents who use amphetamine-type stimulants and sell sex: a qualitative inquiry in Yunnan, China. Harm Reduction Journal, 12(1), 34. https://doi.org/10.1186/s12954-015-0065-y

Zhang, Y., Li, Q., Wen, X., Cai, W., Li, G., Tian, J., Zhang, Y. E., Liu, J., Yuan, K., Zhao, J., Wang, W., Zhou, Z., Ding, M., Gold, M. S., Liu, Y., & Wang, G.-J. (2017). Granger causality reveals a dominant role of memory circuit in chronic opioid dependence. Addiction Biology, 22(4), 1068-1080. https://doi.org/10.1111/adb.12390

Zou, F., Wu, X., Zhai, T., Lei, Y., Shao, Y., Jin, X., Tan, S., Wu, B., Wang, L., & Yang, Z. (2015). Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts. Journal of Neuroscience Research, 93(11), 1693-1702. https://doi.org/10.1002/jnr.23608

Published

2020-05-30

How to Cite

Loganathan, K. and Ho, E. T. W. (2020) “Neurocognitive interventions based on network neuroscience may break the cycle of drug addiction relapse”, Neuroscience Research Notes, 3(2), pp. 15-22. doi: 10.31117/neuroscirn.v3i2.48.

Issue

Section

Hypothetical Paper