Platelets as mediators of neuropsychiatric and neurodegenerative diseases

Authors

  • Vasiliki Konstantinidou Department of Biomedical Sciences, School of Health Sciences International Hellenic University, Thessaloniki, Greece
  • Dimitra Farmaki Department of Biomedical Sciences, School of Health Sciences International Hellenic University, Thessaloniki, Greece
  • Ioannis Chonianakis Department of Biomedical Sciences, School of Health Sciences International Hellenic University, Thessaloniki, Greece
  • Kallimachos Gratsos Faculty of Medicine, Sofia Medical School, Sofia, Bulgaria

DOI:

https://doi.org/10.31117/neuroscirn.v7i3.349

Keywords:

Platelets, Neuroinflammation, Neurodegenerative diseases, Neuropsychiatric disorders

Abstract

Numerous studies showing platelets' role in mechanisms beyond hemostasis have sparked interest in investigating all the pathways in which they may be involved. A growing body of evidence indicates that platelets play a key role in immune response. Platelets carry various membrane receptors and release many bioactive molecules that recruit and activate immune cells. Consequently, platelets have a significant immunoregulatory role in infectious, inflammatory, and degenerative diseases. Moreover, immune cells contribute to neuronal development, neural plasticity, and neuroglial activation. The interaction between platelets and immune cells reveals an additional regulatory mechanism of brain function. This review explores the relationship between platelets and the central nervous system (CNS). It highlights the role of platelets in the development of severe neurodegenerative and neuropsychiatric diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and depression.

References

Abubaker, A. A., Vara, D., Visconte, C., Eggleston, I., Torti, M., Canobbio, I., & Pula, G. (2019). Amyloid peptide Β1-42 induces Integrin ΑIIbΒ3 activation, platelet adhesion, and thrombus formation in a NADPH Oxidase-Dependent manner. Oxidative Medicine and Cellular Longevity, 2019, 1–12. https://doi.org/10.1155/2019/1050476

Aji, K. N., Meyer, J. H., Rusjan, P. M., & Mizrahi, R. (2023). Monoamine oxidase B (MAO-B): a target for rational drug development in schizophrenia using PET imaging as an example. Advances in Neurobiology, 335–362. https://doi.org/10.1007/978-3-031-21054-9_14

Alam, M. M., Yang, D., Li, X., Liu, J., Back, T. C., Trivett, A., Karim, B., Barbut, D., Zasloff, M., & Oppenheim, J. J. (2022). Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Reports, 38(2), 110090. https://doi.org/10.1016/j.celrep.2021.110090

Ali, R. A., Wuescher, L. M., & Worth, R. G. (2015). Platelets: essential components of the immune system. Current Trends in Immunology, 16, 65–78. https://pubmed.ncbi.nlm.nih.gov/27818580

Amadio, P., Zarà, M., Sandrini, L., Ieraci, A., & Barbieri, S. S. (2020). Depression and cardiovascular disease: the viewpoint of platelets. International Journal of Molecular Sciences, 21(20), 7560. https://doi.org/10.3390/ijms21207560

Asor, E. (2012). Platelets: A possible glance into brain biological processes in schizophrenia. World Journal of Psychiatry, 2(6), 124. https://doi.org/10.5498/wjp.v2.i6.124

Baecher-Allan, C., Kaskow, B. J., & Weiner, H. L. (2018). Multiple sclerosis: mechanisms and immunotherapy. Neuron, 97(4), 742–768. https://doi.org/10.1016/j.neuron.2018.01.021

Bandookwala, M., & Sengupta, P. (2020). 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. International Journal of Neuroscience, 130(10), 1047–1062. https://doi.org/10.1080/00207454.2020.1713776

Bar-Or, A., Nuttall, R. K., Duddy, M., Alter, A., Kim, H. J., Ifergan, I., Pennington, C. J., Bourgoin, P., Edwards, D. R., & Yong, V. W. (2003). Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 126(12), 2738–2749. https://doi.org/10.1093/brain/awg285

Bijak, M., Olejnik, A., Rokita, B., Morel, A., Dziedzic, A., Miller, E., & Saluk‐Bijak, J. (2019). Increased level of fibrinogen chains in the proteome of blood platelets in secondary progressive multiple sclerosis patients. Journal of Cellular and Molecular Medicine, 23(5), 3476–3482. https://doi.org/10.1111/jcmm.14244

Black, C. N., Bot, M., Scheffer, P. G., Cuijpers, P., & Penninx, B. W. (2015). Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology, 51, 164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

Bortolato, M., Godar, S. C., Davarian, S., Chen, K., & Shih, J. C. (2009). Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-Deficient mice. Neuropsychopharmacology, 34(13), 2746–2757. https://doi.org/10.1038/npp.2009.118

Boukhatem, I., Fleury, S., Jourdi, G., & Lordkipanidzé, M. (2024). The intriguing role of platelets as custodians of brain-derived neurotrophic factor. Research and Practice in Thrombosis and Haemostasis, 8(3), 102398. https://doi.org/10.1016/j.rpth.2024.102398

Burnouf, T., & Walker, T. L. (2022). The multifaceted role of platelets in mediating brain function. Blood, 140(8), 815–827. https://doi.org/10.1182/blood.2022015970

Canobbio, I. (2019). Blood platelets: Circulating mirrors of neurons? Research and Practice in Thrombosis and Haemostasis, 3(4), 564–565. https://doi.org/10.1002/rth2.12254

Chandra, G., Roy, A., Rangasamy, S. B., & Pahan, K. (2017). Induction of adaptive immunity leads to nigrostriatal disease progression in MPTP mouse model of Parkinson’s disease. The Journal of Immunology, 198(11), 4312–4326. https://doi.org/10.4049/jimmunol.1700149

Chaudhary, P. K., Kim, S., & Kim, S. (2022). An insight into recent advances on platelet function in health and disease. International Journal of Molecular Sciences, 23(11), 6022. https://doi.org/10.3390/ijms23116022

Chen, Y., Zhong, H., Zhao, Y., Luo, X., & Gao, W. (2020). Role of platelet biomarkers in inflammatory response. Biomarker Research, 8(1), 28. https://doi.org/10.1186/s40364-020-00207-2

Chihara, J., Maruyama, I., Yasuba, H., Yasukawa, A., Yamamoto, T., Kurachi, D., Mouri, T., Seguchi, M., & Nakajima, S. (1992). Possible induction of intercellular adhesion molecule-1 (ICAM-1) expression on endothelial cells by platelet-activating factor (PAF). Journal of lipid mediators, 5(2), 159–162. https://pubmed.ncbi.nlm.nih.gov/1356028

Correale, J., & Farez, M. F. (2015). The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology, 6, 180. https://doi.org/10.3389/fneur.2015.00180

Dantzer, R. (2018). Neuroimmune interactions: from the brain to the immune system and vice versa. Physiological Reviews, 98(1), 477–504. https://doi.org/10.1152/physrev.00039.2016

Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson’s disease. Journal of Parkinson Disease, 3(4), 461–491. https://doi.org/10.3233/jpd-130230

Dijkstra, A. A., Voorn, P., Berendse, H. W., Groenewegen, H. J., Rozemuller, A. J., & Van De Berg, W. D. (2014). Stage‐dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Movement Disorders, 29(10), 1244–1251. https://doi.org/10.1002/mds.25952

Dóczi, T., Joó, F., Ádám, G., Bozóky, B., & Szerdahelyi, P. (1986). Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery, 18(6), 733–739. https://doi.org/10.1227/00006123-198606000-00010

Donner, L., Feige, T., Freiburg, C., Toska, L. M., Reichert, A. S., Chatterjee, M., & Elvers, M. (2021). Impact of Amyloid-Β on platelet mitochondrial function and Platelet–Mediated amyloid aggregation in Alzheimer’s disease. International Journal of Molecular Sciences, 22(17), 9633. https://doi.org/10.3390/ijms22179633

Donner, L., Toska, L. M., Krüger, I., Gröniger, S., Barroso, R., Burleigh, A., Mezzano, D., Pfeiler, S., Kelm, M., Gerdes, N., Watson, S. P., Sun, Y., & Elvers, M. (2020). The collagen receptor glycoprotein VI promotes platelet-mediated aggregation of β-amyloid. Science Signaling, 13(643), 1–12. https://doi.org/10.1126/scisignal.aba9872

Dressman, D., & Elyaman, W. (2021). T cells: a growing universe of roles in neurodegenerative diseases. The Neuroscientist, 28(4), 335–348. https://doi.org/10.1177/10738584211024907

Drolet, A., Thivierge, M., Turcotte, S., Hanna, D., Maynard, B., Stankovà, J., & Rola-Pleszczynski, M. (2011). Platelet-Activating factor induces TH17 cell differentiation. Mediators of Inflammation, 2011, 1–12. https://doi.org/10.1155/2011/913802

Dwivedi, Y. (2009). Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatric Disease and Treatment, 5, 433–449. https://doi.org/10.2147/ndt.s5700

Dziedzic, A., & Bijak, M. (2019). Interactions between platelets and leukocytes in pathogenesis of multiple sclerosis. Advances in Clinical and Experimental Medicine, 28(2), 277–285. https://doi.org/10.17219/acem/83588

Dziedzic, A., Miller, E., Bijak, M., Przyslo, L., & Saluk-Bijak, J. (2020). Increased Pro-Thrombotic Platelet Activity Associated with Thrombin/PAR1-Dependent Pathway Disorder in Patients with Secondary Progressive Multiple Sclerosis. International Journal of Molecular Sciences, 21(20), 7722. https://doi.org/10.3390/ijms21207722

Dziedzic, A., Morel, A., Miller, E., Bijak, M., Sliwinski, T., Synowiec, E., Ceremuga, M., & Saluk-Bijak, J. (2020). Oxidative Damage of Blood Platelets Correlates with the Degree of Psychophysical Disability in Secondary Progressive Multiple Sclerosis. Oxidative Medicine and Cellular Longevity, 2020, 1–12. https://doi.org/10.1155/2020/2868014

Ebermeyer, T., Cognasse, F., Berthelot, P., Mismetti, P., Garraud, O., & Hamzeh-Cognasse, H. (2021). Platelet innate immune receptors and TLRs: a double-edged sword. International Journal of Molecular Sciences, 22(15), 7894. https://doi.org/10.3390/ijms22157894

Espinosa-Parrilla, Y., Gonzalez-Billault, C., Fuentes, E., Palomo, I., & Alarcón, M. (2019). Decoding the role of platelets and related MicroRNAs in aging and neurodegenerative disorders. Frontiers in Aging Neuroscience, 11, 151. https://doi.org/10.3389/fnagi.2019.00151

Fard, M. B., Fard, S. B., Ramazi, S., Atashi, A., & Eslamifar, Z. (2021). Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thrombosis Journal, 19(1), 59. https://doi.org/10.1186/s12959-021-00311-9

Ferrer-Raventós, P., & Beyer, K. (2021). Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiology of Disease, 159, 105512. https://doi.org/10.1016/j.nbd.2021.105512

Fisar, Z., Hroudová, J., Hansíková, H., Spá|Ilová, J., Lelková, P., Wenchich, L., Jirák, R., ZvOvá, M., Zeman, J., Martásek, P., & Raboch, J. (2016). Mitochondrial Respiration in the Platelets of Patients with Alzheimer’s Disease. Current Alzheimer Research, 13(8), 930–941. https://doi.org/10.2174/1567205013666160314150856

Fountain, JH, & Lappin, S.L. (2022). Physiology, platelet. StatPearls Publishing, United States.

Friedrich, V., Flores, R., Muller, A., & Sehba, F. A. (2010). Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience, 165(3), 968–975. https://doi.org/10.1016/j.neuroscience.2009.10.038

Gialluisi, A., Izzi, B., Di Castelnuovo, A., Cerletti, C., Donati, M. B., De Gaetano, G., & Iacoviello, L. (2019). Revisiting the link between platelets and depression through genetic epidemiology: new insights from platelet distribution width. Haematologica, 105(5), e246–e248. https://doi.org/10.3324/haematol.2019.222513

Giandomenico, G., Dellas, C., Czekay, R., Koschnick, S., & Loskutoff, D. J. (2005). The leptin receptor system of human platelets. Journal of Thrombosis and Haemostasis, 3(5), 1042–1049. https://doi.org/10.1111/j.1538-7836.2005.01327.x

Glassman, A. H. (2007). Depression and cardiovascular comorbidity. Dialogues in Clinical Neuroscience, 9(1), 9–17. https://doi.org/10.31887/dcns.2007.9.1/ahglassman

Golebiewska, E. M., & Poole, A. W. (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews, 29(3), 153–162. https://doi.org/10.1016/j.blre.2014.10.003

Gremmel, T., Frelinger, A., & Michelson, A. (2016). Platelet physiology. Seminars in Thrombosis and Hemostasis, 42(03), 191–204. https://doi.org/10.1055/s-0035-1564835

Gresele, P., Kleiman, N. S., Lopez, J. A., & Page, C. P. (2017). Platelets in Thrombotic and Non-Thrombotic disorders. Springer eBooks, Switzerland. https://doi.org/10.1007/978-3-319-47462-5

Grotemeyer, A., McFleder, R. L., Wu, J., Wischhusen, J., & Ip, C. W. (2022). Neuroinflammation in Parkinson’s disease – putative pathomechanisms and targets for disease-modification. Frontiers in Immunology, 13, 878771. https://doi.org/10.3389/fimmu.2022.878771

Haroon, E., Raison, C. L., & Miller, A. H. (2011). Psychoneuroimmunology meets Neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37(1), 137–162. https://doi.org/10.1038/npp.2011.205

Hishizawa, M., Yamashita, H., Akizuki, M., Urushitani, M., & Takahashi, R. (2019). TDP-43 levels are higher in platelets from patients with sporadic amyotrophic lateral sclerosis than in healthy controls. Neurochemistry International, 124, 41–45. https://doi.org/10.1016/j.neuint.2018.12.009

Horstman, L. L., Jy, W., Ahn, Y. S., Zivadinov, R., Maghzi, A. H., Etemadifar, M., Alexander, J. S., & Minagar, A. (2010). Role of platelets in neuroinflammation: a wide-angle perspective. Journal of Neuroinflammation, 7(1), 10. https://doi.org/10.1186/1742-2094-7-10

Inyushin, M. Y., Sanabria, P., Rojas, L., Kucheryavykh, Y., & Kucheryavykh, L. (2017). AβPeptide Originated from Platelets Promises New Strategy in Anti-Alzheimer’s Drug Development. BioMed Research International, 2017, 1–10. https://doi.org/10.1155/2017/3948360

Inyushin, M., Zayas-Santiago, A., Rojas, L., & Kucheryavykh, L. (2020). On the role of platelet-generated amyloid beta peptides in certain amyloidosis health complications. Frontiers in Immunology, 11, 571083. https://doi.org/10.3389/fimmu.2020.571083

Izzi, B., Tirozzi, A., Cerletti, C., Donati, M. B., De Gaetano, G., Hoylaerts, M. F., Iacoviello, L., & Gialluisi, A. (2020). Beyond haemostasis and thrombosis: platelets in depression and its co-morbidities. International Journal of Molecular Sciences, 21(22), 8817. https://doi.org/10.3390/ijms21228817

Jow, G., Yang, T., & Chen, C. (2006). Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. Journal of Affective Disorders, 90(1), 21–27. https://doi.org/10.1016/j.jad.2005.09.015

Kaufmann, M., Schaupp, A., Sun, R., Coscia, F., Dendrou, C. A., Cortes, A., Kaur, G., Evans, H. G., Mollbrink, A., Navarro, J. F., Sonner, J. K., Mayer, C., DeLuca, G. C., Lundeberg, J., Matthews, P. M., Attfield, K. E., Friese, M. A., Mann, M., & Fugger, L. (2022). Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nature Neuroscience, 25(7), 944–955. https://doi.org/10.1038/s41593-022-01097-3

Kazanis, I., Feichtner, M., Lange, S., Rotheneichner, P., Hainzl, S., Öller, M., Schallmoser, K., Rohde, E., Reitsamer, H. A., Couillard-Despres, S., Bauer, H., Franklin, R. J. M., Aigner, L., & Rivera, F. J. (2015). Lesion-Induced accumulation of platelets promotes survival of adult neural stem / progenitor cells. Experimental Neurology, 269, 75–89. https://doi.org/10.1016/j.expneurol.2015.03.018

Kniewallner, K. M., De Sousa, D. M. B., Unger, M. S., Mrowetz, H., & Aigner, L. (2020). Platelets in amyloidogenic mice are activated and invade the brain. Frontiers in Neuroscience, 14, 129. https://doi.org/10.3389/fnins.2020.00129

Kniewallner, K. M., Wenzel, D., & Humpel, C. (2016). Thiazine red+ platelet inclusions in cerebral blood vessels are first signs in an Alzheimer’s disease mouse model. Scientific Reports, 6(1), 28447. https://doi.org/10.1038/srep28447

Kocovski, P., Jiang, X., D’Souza, C. S., Li, Z., Dang, P. T., Wang, X., Chen, W., Peter, K., Hale, M. W., & Orian, J. M. (2019). Platelet Depletion is Effective in Ameliorating Anxiety-Like Behavior and Reducing the Pro-Inflammatory Environment in the Hippocampus in Murine Experimental Autoimmune Encephalomyelitis. Journal of Clinical Medicine, 8(2), 162. https://doi.org/10.3390/jcm8020162

Kopeikina, E., & Ponomarev, E. D. (2021). The role of platelets in the stimulation of neuronal synaptic plasticity, electric activity, and oxidative phosphorylation: Possibilities for new therapy of neurodegenerative diseases. Frontiers in Cellular Neuroscience, 15, 680126. https://doi.org/10.3389/fncel.2021.680126

Koudouovoh-Tripp, P. (2012). Influence of mental stress on platelet bioactivity. World Journal of Psychiatry, 2(6), 134. https://doi.org/10.5498/wjp.v2.i6.134

Koupenova, M., Clancy, L., Corkrey, H. A., & Freedman, J. E. (2018). Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circulation Research, 122(2), 337–351. https://doi.org/10.1161/circresaha.117.310795

Kuenz, B., Lutterotti, A., Khalil, M., Ehling, R., Gneiss, C., Deisenhammer, F., Reindl, M., & Berger, T. (2005). Plasma levels of soluble adhesion molecules sPECAM-1, sP-selectin and sE-selectin are associated with relapsing-remitting disease course of multiple sclerosis. Journal of Neuroimmunology, 167(1–2), 143–149. https://doi.org/10.1016/j.jneuroim.2005.06.019

Lake, C.R., Pickar, D., Ziegler, M.G., Lipper, S., Slater, S., & Murphy, D.L. (1982). High plasma norepinephrine levels in patients with major affective disorder. American Journal of Psychiatry, 139(10), 1315. https://doi.org/10.1176/ajp.139.10.1315

Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of Meperidine-Analog synthesis. Science, 219(4587), 979–980. https://doi.org/10.1126/science.6823561

Leiter, O., & Walker, T. L. (2019). Platelets: The missing link between the blood and brain? Progress in Neurobiology, 183, 101695. https://doi.org/10.1016/j.pneurobio.2019.101695

Leiter, O., & Walker, T. L. (2020). Platelets in Neurodegenerative Conditions—Friend or foe? Frontiers in Immunology, 11, 747. https://doi.org/10.3389/fimmu.2020.00747

Li, D., Huang, L., Zhang, C., Li, Q., & Wang, J. (2022). Insights into the role of platelet-derived growth factors: implications for Parkinson’s disease pathogenesis and treatment. Frontiers in Aging Neuroscience, 14, 890509. https://doi.org/10.3389/fnagi.2022.890509

Li, L., Li, M., Pan, L., Wang, G., Guo, M., Fu, L., Guo, J., Gao, Y., Chen, F., & Xie, M. (2016). Comparative analysis of platelet 5-HT concentrations in Han and Li patients with post-traumatic stress disorder. Genetics and Molecular Research, 15(3), 8265. https://doi.org/10.4238/gmr.15038265

Lim, K., Kim, H., Bae, O., Noh, J., Kim, K., Kim, S., Chung, S., Shin, S., Kim, H., & Chung, J. (2009). Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: Evidence for the reduced platelet activities in Parkinson’s disease. Platelets, 20(3), 163–170. https://doi.org/10.1080/09537100902721746

Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2001). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology, 47(6), 707–717. https://doi.org/10.1002/1531-8249(200006)47:6%3C707::AID-ANA3%3E3.0.CO;2-Q

Lv, W., Jiang, X., & Zhang, Y. (2024). The role of platelets in the blood-brain barrier during brain pathology. Frontiers in Cellular Neuroscience, 17, 1298314. https://doi.org/10.3389/fncel.2023.1298314

Ma, Y., Jiang, Q., Yang, B., Hu, X., Shen, G., Shen, W., & Xu, J. (2023). Platelet mitochondria, a potent immune mediator in neurological diseases. Frontiers in Physiology, 14, 1210509. https://doi.org/10.3389/fphys.2023.1210509

Maouia, A., Rebetz, J., Kapur, R., & Semple, J. W. (2020). The immune nature of platelets revisited. Transfusion Medicine Reviews, 34(4), 209–220. https://doi.org/10.1016/j.tmrv.2020.09.005

Mehdi-Alamdarlou, S., Ahmadi, F., Shahbazi, M., Azadi, A., & Ashrafi, H. (2023). Platelets and platelet-derived vesicles as an innovative cellular and subcellular platform for managing multiple sclerosis. Molecular Biology Reports, 50(5), 4675–4686. https://doi.org/10.1007/s11033-023-08322-7

Melchinger, H., Jain, K., Tyagi, T., & Hwa, J. (2019). Role of platelet mitochondria: Life in a nucleus-free zone. Frontiers in Cardiovascular Medicine, 6, 153. https://doi.org/10.3389/fcvm.2019.00153

Morel, A., Bijak, M., Miller, E., Rywaniak, J., Miller, S., & Saluk, J. (2015). Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage. Oxidative Medicine and Cellular Longevity, 2015, 1–10. https://doi.org/10.1155/2015/240918

Morel, A., Miller, E., Bijak, M., & Saluk, J. (2016). The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients. Molecular and Cellular Biochemistry, 420(1–2), 85–94. https://doi.org/10.1007/s11010-016-2770-6

Orian, J. M., D’Souza, C. S., Kocovski, P., Krippner, G., Hale, M. W., Wang, X., & Peter, K. (2021). Platelets in multiple sclerosis: early and central mediators of inflammation and neurodegeneration and attractive targets for molecular imaging and Site-Directed therapy. Frontiers in Immunology, 12, 620963. https://doi.org/10.3389/fimmu.2021.620963

Owens, M. J., & Nemeroff, C. B. (1998). The serotonin transporter and depression. Depression and Anxiety, 8(S1), 5–12. https://doi.org/10.1002/(SICI)1520-6394(1998)8:1+<5::AID-DA2>3.0.CO;2-I

Patterson, S. M., Krantz, D. S., Gottdiener, J. S., Hecht, G., Vargot, S., & Goldstein, D. S. (1995). Prothrombotic effects of environmental stress. Psychosomatic Medicine, 57(6), 592–599. https://doi.org/10.1097/00006842-199511000-00012

Peacock, B. N., Scheiderer, D. J., & Kellermann, G. H. (2017). Biomolecular aspects of depression: A retrospective analysis. Comprehensive Psychiatry, 73, 168–180. https://doi.org/10.1016/j.comppsych.2016.11.002

Pei, Y., & Maitta, R. W. (2019). Alpha synuclein in hematopoiesis and immunity. Heliyon, 5(10), e02590. https://doi.org/10.1016/j.heliyon.2019.e02590

Peitl, V., Getaldić-Švarc, B., & Karlović, D. (2020). Platelet Serotonin Concentration Is Associated with Illness Duration in Schizophrenia and Chronological Age in Depression. Psychiatry Investigation, 17(6), 579–586. https://doi.org/10.30773/pi.2020.0033

Pivac, N., Kozaric-Kovacic, D., Mustapic, M., Dezeljin, M., Borovecki, A., Grubisic-Ilic, M., & Muck-Seler, D. (2006). Platelet serotonin in combat related posttraumatic stress disorder with psychotic symptoms. Journal of Affective Disorders, 93(1–3), 223–227. https://doi.org/10.1016/j.jad.2006.02.018

Puhm, F., Boilard, E., & Machlus, K. R. (2020). Platelet extracellular vesicles. Arteriosclerosis Thrombosis and Vascular Biology, 41(1), 87–96. https://doi.org/10.1161/atvbaha.120.314644

Puricelli, C., Boggio, E., Gigliotti, C. L., Stoppa, I., Sutti, S., Giordano, M., Dianzani, U., & Rolla, R. (2023). Platelets, protean cells with all-around functions and multifaceted pharmacological applications. International Journal of Molecular Sciences, 24(5), 4565. https://doi.org/10.3390/ijms24054565

Ransohoff, R. M. (2016). How neuroinflammation contributes to neurodegeneration. Science, 353(6301), 777–783. https://doi.org/10.1126/science.aag2590

Rawish, E., Nording, H., Münte, T., & Langer, H. F. (2020). Platelets as mediators of neuroinflammation and thrombosis. Frontiers in Immunology, 11, 548631. https://doi.org/10.3389/fimmu.2020.548631

Rayes, J., Bourne, J. H., Brill, A., & Watson, S. P. (2020). The dual role of platelet‐innate immune cell interactions in thrombo‐inflammation. Research and Practice in Thrombosis and Haemostasis, 4(1), 23–35. https://doi.org/10.1002/rth2.12266

Repovecki, S., Erjavec, G. N., Uzun, S., Tudor, L., Perkovic, M. N., Konjevod, M., Kozumplik, O., Strac, D. S., Petrovic, Z. K., Mimica, N., & Pivac, N. (2022). Reduced Platelet MAO-B Activity Is Associated with Psychotic, Positive, and Depressive Symptoms in PTSD. Biomolecules, 12(5), 736. https://doi.org/10.3390/biom12050736

Roshanisefat, H., Bahmanyar, S., Hillert, J., Olsson, T., & Montgomery, S. (2014). Multiple sclerosis clinical course and cardiovascular disease risk – Swedish cohort study. European Journal of Neurology, 21(11), 1353. https://doi.org/10.1111/ene.12518

Rossaint, J., Margraf, A., & Zarbock, A. (2018). Role of platelets in leukocyte recruitment and resolution of inflammation. Frontiers in Immunology, 9, 2712. https://doi.org/10.3389/fimmu.2018.02712

Rust, C., Malan-Muller, S., Van Den Heuvel, L. L., Tonge, D., Seedat, S., Pretorius, E., & Hemmings, S. M. (2023). Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. Journal of Neuroimmunology, 382, 578155. https://doi.org/10.1016/j.jneuroim.2023.578155

Saluk-Bijak, J., Dziedzic, A., & Bijak, M. (2019). Pro-Thrombotic activity of blood platelets in multiple sclerosis. Cells, 8(2), 110. https://doi.org/10.3390/cells8020110

Santana, J., & Marzolo, M. (2017). The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochemical Journal, 474(18), 3137–3165. https://doi.org/10.1042/bcj20160628

Sarg, B., Korde, D. S., Marksteiner, J., & Humpel, C. (2022). Platelet Tau is associated with changes in depression and Alzheimer’s disease. Frontiers in Bioscience-Landmark, 27(5), 153. https://doi.org/10.31083/j.fbl2705153

Schreiner, T. G., Romanescu, C., & Popescu, B. O. (2022). the blood–brain barrier—a key player in multiple sclerosis disease mechanisms. Biomolecules, 12(4), 538. https://doi.org/10.3390/biom12040538

Seizer, P., & May, A. E. (2013). Platelets and matrix metalloproteinases. Thrombosis and Haemostasis, 110(11), 903–909. https://doi.org/10.1160/th13-02-0113

Selfridge, J. E., E, L., Lu, J., & Swerdlow, R. H. (2013). Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiology of Disease, 51, 3–12. https://doi.org/10.1016/j.nbd.2011.12.057

Serra-Millàs, M., López-Vílchez, I., Navarro, V., Galán, A., Escolar, G., Penadés, R., Catalán, R., Fañanás, L., Arias, B., & Gastó, C. (2011). Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology, 216(1), 1–8. https://doi.org/10.1007/s00213-011-2180-0

Seyoum, M., Enawgaw, B., & Melku, M. (2018). Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thrombosis Journal, 16(1), 16. https://doi.org/10.1186/s12959-018-0170-8

Sheremata, W. A., Jy, W., Horstman, L. L., Ahn, Y. S., Alexander, J. S., & Minagar, A. (2008). Evidence of platelet activation in multiple sclerosis. Journal of Neuroinflammation, 5(1), 27. https://doi.org/10.1186/1742-2094-5-27

Sol, N., Leurs, C. E., Veld, S. G. I. ’., Strijbis, E. M., Vancura, A., Schweiger, M. W., Teunissen, C. E., Mateen, F. J., Tannous, B. A., Best, M. G., Würdinger, T., & Killestein, J. (2020). Blood platelet RNA enables the detection of multiple sclerosis. Multiple Sclerosis Journal - Experimental Translational and Clinical, 6(3), 205521732094678. https://doi.org/10.1177/2055217320946784

Sonmez, O., & Sonmez, M. (2017). Role of platelets in immune system and inflammation. Porto Biomedical Journal, 2(6), 311–314. https://doi.org/10.1016/j.pbj.2017.05.005

Sotnikov, I., Veremeyko, T., Starossom, S. C., Barteneva, N., Weiner, H. L., & Ponomarev, E. D. (2013). Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation. PLoS ONE, 8(3), e58979. https://doi.org/10.1371/journal.pone.0058979

Spakova, T., Janockova, J., & Rosocha, J. (2021). Characterization and therapeutic use of extracellular vesicles derived from platelets. International Journal of Molecular Sciences, 22(18), 9701. https://doi.org/10.3390/ijms22189701

Stain-Malmgren, R., Khoury, A. E., Aberg-Wistedt, A., & Tham, A. (2001). Serotonergic function in major depression and effect of sertraline and paroxetine treatment. International Clinical Psychopharmacology, 16(2), 93–101. https://doi.org/10.1097/00004850-200103000-00004

Thomas, M. R., & Storey, R. F. (2015). The role of platelets in inflammation. Thrombosis and Haemostasis, 114(09), 449–458. https://doi.org/10.1160/th14-12-1067

Thornton, P., McColl, B. W., Greenhalgh, A., Denes, A., Allan, S. M., & Rothwell, N. J. (2010). Platelet interleukin-1α drives cerebrovascular inflammation. Blood, 115(17), 3632–3639. https://doi.org/10.1182/blood-2009-11-252643

Tseng, W., Huang, C., Chong, K., Liao, C., Stern, A., Cheng, J., & Tseng, C. (2009). Reelin is a platelet protein and functions as a positive regulator of platelet spreading on fibrinogen. Cellular and Molecular Life Sciences, 67(4), 641–653. https://doi.org/10.1007/s00018-009-0201-5

Visconte, C., Canino, J., Vismara, M., Guidetti, G. F., Raimondi, S., Pula, G., Torti, M., & Canobbio, I. (2020). Fibrillar amyloid peptides promote platelet aggregation through the coordinated action of ITAM‐ and ROS‐dependent pathways. Journal of Thrombosis and Haemostasis, 18(11), 3029–3042. https://doi.org/10.1111/jth.15055

Vogelsang, A., Eichler, S., Huntemann, N., Masanneck, L., Böhnlein, H., Schüngel, L., Willison, A., Loser, K., Nieswandt, B., Kehrel, B. E., Zarbock, A., Göbel, K., & Meuth, S. G. (2021). Platelet inhibition by Low-Dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis. International Journal of Molecular Sciences, 22(18), 9915. https://doi.org/10.3390/ijms22189915

Von Essen, M. R., Søndergaard, H. B., Petersen, E. R., & Sellebjerg, F. (2019). IL-6, IL-12, and IL-23 STAT-pathway genetic risk and responsiveness of lymphocytes in patients with multiple sclerosis. Cells, 8(3), 285. https://doi.org/10.3390/cells8030285

Wachowicz, B., Morel, A., Miller, E., & Saluk, J. (2016). The physiology of blood platelets and changes of their biological activities in multiple sclerosis. Acta Neurobiologiae Experimentalis, 76(4), 269–281. https://doi.org/10.21307/ane-2017-026

Wang, Z., Zheng, Y., Cai, H., Yang, C., Li, S., Lv, H., Feng, T., & Yu, Z. (2023). Aβ1-42-containing platelet-derived extracellular vesicle is associated with cognitive decline in Parkinson’s disease. Frontiers in Aging Neuroscience, 15, 1170663. https://doi.org/10.3389/fnagi.2023.1170663

Wassmer, S. C., Humpel, C., & Orian, J. M. (2021). Editorial: Platelets as Players in Neuropathologies: Novel Diagnostic and Therapeutic Targets. Frontiers in Immunology, 12, 772352. https://doi.org/10.3389/fimmu.2021.772352

Williams, M. S. (2012). Platelets and depression in cardiovascular disease: A brief review of the current literature. World Journal of Psychiatry, 2(6), 114. https://doi.org/10.5498/wjp.v2.i6.114

Williams, M. S., Ziegelstein, R. C., McCann, U. D., Gould, N. F., Ashvetiya, T., & Vaidya, D. (2019). Platelet serotonin signaling in patients with cardiovascular disease and comorbid depression. Psychosomatic Medicine, 81(4), 352–362. https://doi.org/10.1097/psy.0000000000000689

Wu, T., Chen, L., Zhou, L., Xu, J., & Guo, K. (2021). Platelets transport β-amyloid from the peripheral blood into the brain by destroying the blood-brain barrier to accelerate the process of Alzheimer’s disease in mouse models. Aging, 13(5), 7644–7659. https://doi.org/10.18632/aging.202662

Yu, H., Liu, Y., He, B., He, T., Chen, C., He, J., Yang, X., & Wang, J. (2021). Platelet biomarkers for a descending cognitive function: A proteomic approach. Aging Cell, 20(5), e13358. https://doi.org/10.1111/acel.13358

Yun, S., Sim, E., Goh, R., Park, J., & Han, J. (2016). Platelet activation: the mechanisms and potential biomarkers. BioMed Research International, 2016, 1–5. https://doi.org/10.1155/2016/9060143

Downloads

Published

2024-09-15

How to Cite

Konstantinidou, V., Farmaki, D., Chonianakis, I. and Gratsos, K. (2024) “Platelets as mediators of neuropsychiatric and neurodegenerative diseases”, Neuroscience Research Notes, 7(3), pp. 349.1–349.15. doi: 10.31117/neuroscirn.v7i3.349.