The effect of exclusive breastfeeding on synaptogenesis and cell survival in mouse offspring
DOI:
https://doi.org/10.31117/neuroscirn.v7i3.337Keywords:
Breastfeeding, Neurogenesis, Cognitive developmentAbstract
The first thousand days of life are critical for determining a child's cognitive development in humans. Breastfeeding may provide the nutrients needed for brain development. Cognitive function has been widely associated with neuronal turnover, driven by synaptogenesis and apoptosis. To explore this hypothesis, this study aimed to examine the effect of exclusive breastfeeding (EBF) on cognitive function and neuronal turnover in the dentate gyrus of the mice hippocampus. We conducted cognitive function assessments using the Morris Water Maze (MWM) test. We also examined neuronal apoptosis with TUNEL assay and synaptogenesis using PSD-95 antibodies. The newborn mice (mixed gender) aged 0 days were randomly divided into two groups. The first group received exclusive breastfeeding (EBF, n = 14), while the second group (MF, n = 14) received mixed breast milk and formula milk. At postnatal day 21 (PND21), the MWM test was performed, followed by an assessment of neuronal apoptosis and synaptogenesis. In the MWM test, the escape latency of the EBF group was shorter than the MF group. There was a significant increase in PSD-95 expression and a decrease in TUNEL expression in the EBF group (p < 0.001) than in the MF group. In conclusion, exclusive breastfeeding is associated with higher cognitive function. Exclusive breastfeeding affects neuronal turnover by increasing synaptogenesis and decreasing apoptosis in the dentate gyrus of the hippocampus. This has both scientific and clinical implications, pointing to nutritional practices early in life that could optimise the attainment of cognitive potential.
References
Balogun, O. O., Dagvadorj, A., Anigo, K. M., Ota, E., & Sasaki, S. (2015). Factors influencing breastfeeding exclusivity during the first 6 months of life in developing countries: A quantitative and qualitative systematic review. Maternal & Child Nutrition, 11(4), 433–451. https://doi.org/10.1111/mcn.12180
Chambers, R. A., & Conroy, S., K. (2007). Network modeling of adult neurogenesis: shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. Journal of Cognitive Neuroscience, 19(1), 1–12. https://doi.org/10.1162/jocn.2007.19.1.1
Chen, X. Y., Gu, C., Ma, M., Cong, Q., Guo, T., Ma, D., & Li, B. (2013). A mouse model of premature ovarian insufficiency induced by tripterygium glycoside via subcutaneous injection. International Journal of Clinical Experimental Pathology, 7(1), 144-51.
Dror, D. K., & Allen, L. H. (2018). Overview of nutrients in human milk. Advances in Nutrition, 9, 278S-294S. https://doi.org/10.1093/advances/nmy022
Docq, S., Spoelder, M., Wang, W., & Homberg J. R. (2020). The protective and long-lasting effects of human milk oligosaccharides on cognition in mammals. Nutrients, 12(11), 3572. https://doi.org/10.3390/nu12113572
Gizaw, Z., Woldu, W., & Bitew, B. D. (2017). Exclusive breastfeeding status of children aged between 6 and 24 months in the nomadic population of Hadaleala district, Afar Region, northeast Ethiopia. International Breastfeeding Journal, 12, 38. https://doi.org/10.1186/s13006-017-0129-6
Gorecki, A. M., Slosberg, J., Hong, S. M., Migden, B., Gulko, A., Singh, A., Zhang, C., Gurumurthy, R., & Kulkarni, S. (2023). Detection of mitotic neuroblasts provides additional evidence of steady state neurogenesis in the adult enteric nervous system. BioRxiv. https://doi.org/10.1101/2022.11.14.516462
Griebler, U., Bruckmüller, M. U., Kien, C., Dieminger, B., Meidlinger, B., Seper, K., Hitthaller, A., Emprechtinger, R., Wolf, A., & Gartlehner, G. (2016). Health effects of cow’s milk consumption in infants up to 3 years of age: A systematic review and meta-analysis. Public Health Nutrition, 19(2), 293–307. https://doi.org/10.1017/S1368980015001354
Isaacs, E. B., Fischl, B. R., Quinn, B. T., Chong, W. K., & Gadian, D. G. (2011). Impact of breast milk on IQ, brain size and white matter development. Pediatric Research, 67(4), 357–362. https://doi.org/10.1203/PDR.0b013e3181d026da
Irfannuddin, I., Sarahdeaz, S.F.P., & Murti, K. (2021). The effect of ketogenic diets on neurogenesis and apoptosis in the dentate gyrus of the male rat hippocampus. The Journal of Physiological Sciences, 71(3). https://doi.org/10.1186/s12576-020-00786-7
Jewell, V.C., Mayes, C.B.D., Tubman, T.R.J., Northrop-Clewes, C.A., & Thurnham, D.I. (2004). A comparison of lutein and zeaxanthin concentrations in formula and human milk samples from Northern Ireland mothers. European Journal of Clinical Nutrition, 58(1), 90–97. https://doi.org/10.1038/sj.ejcn.1601753
Khan, M. S., Muhammad, T., Ikram M., Kim, M. O. (2019). Dietary supplementation of the antioxidant Ccurcumin halts systemic LPS-induced neuroinflammation-associated neurodegeneration and memory/synaptic impairment via the JNK/NF-κB/Akt signaling pathway in adult rats. Oxidative Medicine and Cellular Longevity, 23. https://doi.org/10.1155/2019/7860650
Krishna, T. C., Najda, A., Bains, A., Tosif, M. M., Papliński, R., Kapłan, M., & Chawla, P. (2021). Influence of Ultra-Heat Treatment on Properties of Milk Proteins. Polymers, 13(18), 3164. https://doi.org/10.3390/polym13183164
Lemaire, M., Le Huërou-Luron, I., & Blat, S. (2018). Effects of infant formula composition on long-term metabolic health. Journal of Developmental Origins of Health and Disease, 9(6), 573–589. https://doi.org/10.1017/S2040174417000964
Lorenzo, I. S., Tonato, A. M. C., De, A., & Puentes, G. (2019). The Effect of an Infant Formula Supplemented with AA and DHA on Fatty Acid Levels of Infants with Different FADS Genotypes: The COGNIS Study. Nutrients, 11(3), 602. https://doi.org/10.3390/nu11030602
Lubetzky, R., Sever, O., Mimouni, F. B., & Mandel, D. (2015). Human milk macronutrients content: Effect of advanced maternal age. Breastfeeding Medicine, 10(9), 433–436. https://doi.org/10.1089/bfm.2015.0072
Meek, J. Y., & Noble, L. (2022). Policy Statement: Breastfeeding and the Use of Human Milk. Pediatrics, 150(1), e2022057988. https://doi.org/10.1542/peds.2022-057988
McEachern, E. P., Coley, A. A., Yang, S. S., & Gao, W. J. (2020). PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology, 15(179). https://doi.org/10.1016/j.neuropharm.2020.108277
Moore, C. L., Savenka, A. V., & Basnakian, A. G. (2021).TUNEL Assay: A powerful tool for kidney injury evaluation. International Journal of Molecular Sciences, 22(1), 412. https://doi.org/10.3390/ijms22010412
Nakamura, H., Iwamoto, M., Washida, K., Sekine, K., Takase, M., Park, B.-J., Morikawa, T., & Miyazaki, Y. (2010). Influences of casein hydrolysate ingestion on cerebral activity, autonomic nerve activity, and anxiety. Journal of Physiologycal Anthropology, 29(3), 103–108. https://doi.org/10.2114/jpa2.29.103
Nuzzi, G., Di Cicco, M. E., & Peroni, D. G. (2021). Breastfeeding and allergic diseases: What’s New? Children, 8(5), 330. PubMed. https://doi.org/10.3390/children8050330
O’Kennedy, B. T., & Mounsey, J. S. (2006). Control of heat-induced aggregation of whey proteins using casein. Journal of Agricultural and Food Chemistry, 54(15), 5637–5642. https://doi.org/10.1021/jf0607866
Plunkett, B. A., Mele, L., Casey, B. M., Varner, M. W., Sorokin, Y., Reddy, U. M., Wapner, R. J., Thorp Jr, J. M., Saade, G. R., Tita, A. T. N., Rouse, D. J., Sibai, B., Mercer, B. M., Tolosa, J. E., & Caritis, S. N. (2021). Association of breastfeeding and child IQ score at age 5 years. Obstetrics and Gynecology, 137(4), 561–570. https://doi.org/10.1097/AOG.0000000000004314
Preissmann, D., Leuba, G., Savary, C., Vernay, A., Kraftsik, R., Riederer, I.M., Schenk, F., Riederer, B.M., & Savioz, A. (2012). Increased postsynaptic density protein-95 expression in the frontal cortex of aged cognitively impaired rats. Experimental Biology and Medicine, 237(11), 1331-1340. https://doi.org/10.1258/ebm.2012.012020
Salim, Y. M., & Stones, W. (2020). Determinants of exclusive breastfeeding in infants of six months and below in Malawi: A cross-sectional study. BMC Pregnancy and Childbirth, 20(1), 472–472. https://doi.org/10.1186/s12884-020-03160-y
Sánchez-infantes, D., Cereijo, R., Sebastiani, G., Pérez-cruz, M., Villarroya, F., & Ibáñez, L. (2018). Nerve growth factor levels in term human infants: Relationship to prenatal growth and early postnatal feeding. International Journal of Endocrinology, 2018(1), 23. https://doi.org/10.1155/2018/7562702
Sankar, M. J., Sinha, B., Chowdhury, R., Bhandari, N., Taneja, S., Martines, J., & Bahl, R. (2015). Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis. Acta Paediatrica, 104(S467), 3–13. https://doi.org/10.1111/apa.13147
Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106(107), 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001
Talpos, J. C., Dias, R., Bussey, T. J., & Saksida, L. M. (2008). Hippocampal lesions in rats impair learning and memory for locations on a touch-sensitive computer screen: the "ASAT" task. Behavioural Brain Research, 192(2), 216-25. https://doi.org/10.1016/j.bbr.2008.04.008
Thakkar, S. K., Giuffrida, F., Bertschy, E., De Castro, A., Destaillats, F., & Lee, L. Y. (2016). Protein eolution of human milk. In Nestlé Nutrition Institute Workshop Series, 86, 77–85. https://doi.org/10.1159/000442725
van den Elsen, L. W. J., Garssen, J., Burcelin, R., & Verhasselt, V. (2019). Shaping the gut Microbiota by breastfeeding: the gateway to allergy prevention? Frontiers in Pediatrics, 7, 47–47. https://doi.org/10.3389/fped. 2019.00047
Yang, X.-D., Wang, L.-K., Wu, H.-Y., & Jiao, L. (2018). Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiology, 18(1), 177. https://doi.org/10.1186/s12871-018-0642-1
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Siti Sarahdeaz Fazzaura Putri, Irfannuddin Irfannuddin, Yudianita Kesuma, Krisna Murti, Hardi Darmawan, Noriyuki Koibuchi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.