The effect of exclusive breastfeeding on synaptogenesis and cell survival in mouse offspring

Authors

  • Siti Sarahdeaz Fazzaura Putri Faculty of Medicine, Universitas Sriwijaya, Gedung FK Unsri, Jalan Dr. M. Ali Komplek RSMH, Palembang, 30126, Indonesia
  • Irfannuddin Irfannuddin Faculty of Medicine, Universitas Sriwijaya, Gedung FK Unsri, Jalan Dr. M. Ali Komplek RSMH, Palembang, 30126, Indonesia
  • Yudianita Kesuma Faculty of Medicine, Universitas Sriwijaya, Gedung FK Unsri, Jalan Dr. M. Ali Komplek RSMH, Palembang, 30126, Indonesia
  • Krisna Murti Faculty of Medicine, Universitas Sriwijaya, Gedung FK Unsri, Jalan Dr. M. Ali Komplek RSMH, Palembang, 30126, Indonesia
  • Hardi Darmawan Faculty of Medicine, Universitas Sriwijaya, Gedung FK Unsri, Jalan Dr. M. Ali Komplek RSMH, Palembang, 30126, Indonesia
  • Noriyuki Koibuchi Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan

DOI:

https://doi.org/10.31117/neuroscirn.v7i3.337

Keywords:

Breastfeeding, Neurogenesis, Cognitive development

Abstract

The first thousand days of life are critical for determining a child's cognitive development in humans. Breastfeeding may provide the nutrients needed for brain development. Cognitive function has been widely associated with neuronal turnover, driven by synaptogenesis and apoptosis. To explore this hypothesis, this study aimed to examine the effect of exclusive breastfeeding (EBF) on cognitive function and neuronal turnover in the dentate gyrus of the mice hippocampus. We conducted cognitive function assessments using the Morris Water Maze (MWM) test. We also examined neuronal apoptosis with TUNEL assay and synaptogenesis using PSD-95 antibodies. The newborn mice (mixed gender) aged 0 days were randomly divided into two groups. The first group received exclusive breastfeeding (EBF, n = 14), while the second group (MF, n = 14) received mixed breast milk and formula milk. At postnatal day 21 (PND21), the MWM test was performed, followed by an assessment of neuronal apoptosis and synaptogenesis. In the MWM test, the escape latency of the EBF group was shorter than the MF group. There was a significant increase in PSD-95 expression and a decrease in TUNEL expression in the EBF group (p < 0.001) than in the MF group. In conclusion, exclusive breastfeeding is associated with higher cognitive function. Exclusive breastfeeding affects neuronal turnover by increasing synaptogenesis and decreasing apoptosis in the dentate gyrus of the hippocampus. This has both scientific and clinical implications, pointing to nutritional practices early in life that could optimise the attainment of cognitive potential.

References

Balogun, O. O., Dagvadorj, A., Anigo, K. M., Ota, E., & Sasaki, S. (2015). Factors influencing breastfeeding exclusivity during the first 6 months of life in developing countries: A quantitative and qualitative systematic review. Maternal & Child Nutrition, 11(4), 433–451. https://doi.org/10.1111/mcn.12180

Chambers, R. A., & Conroy, S., K. (2007). Network modeling of adult neurogenesis: shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. Journal of Cognitive Neuroscience, 19(1), 1–12. https://doi.org/10.1162/jocn.2007.19.1.1

Chen, X. Y., Gu, C., Ma, M., Cong, Q., Guo, T., Ma, D., & Li, B. (2013). A mouse model of premature ovarian insufficiency induced by tripterygium glycoside via subcutaneous injection. International Journal of Clinical Experimental Pathology, 7(1), 144-51.

Dror, D. K., & Allen, L. H. (2018). Overview of nutrients in human milk. Advances in Nutrition, 9, 278S-294S. https://doi.org/10.1093/advances/nmy022

Docq, S., Spoelder, M., Wang, W., & Homberg J. R. (2020). The protective and long-lasting effects of human milk oligosaccharides on cognition in mammals. Nutrients, 12(11), 3572. https://doi.org/10.3390/nu12113572

Gizaw, Z., Woldu, W., & Bitew, B. D. (2017). Exclusive breastfeeding status of children aged between 6 and 24 months in the nomadic population of Hadaleala district, Afar Region, northeast Ethiopia. International Breastfeeding Journal, 12, 38. https://doi.org/10.1186/s13006-017-0129-6

Gorecki, A. M., Slosberg, J., Hong, S. M., Migden, B., Gulko, A., Singh, A., Zhang, C., Gurumurthy, R., & Kulkarni, S. (2023). Detection of mitotic neuroblasts provides additional evidence of steady state neurogenesis in the adult enteric nervous system. BioRxiv. https://doi.org/10.1101/2022.11.14.516462

Griebler, U., Bruckmüller, M. U., Kien, C., Dieminger, B., Meidlinger, B., Seper, K., Hitthaller, A., Emprechtinger, R., Wolf, A., & Gartlehner, G. (2016). Health effects of cow’s milk consumption in infants up to 3 years of age: A systematic review and meta-analysis. Public Health Nutrition, 19(2), 293–307. https://doi.org/10.1017/S1368980015001354

Isaacs, E. B., Fischl, B. R., Quinn, B. T., Chong, W. K., & Gadian, D. G. (2011). Impact of breast milk on IQ, brain size and white matter development. Pediatric Research, 67(4), 357–362. https://doi.org/10.1203/PDR.0b013e3181d026da

Irfannuddin, I., Sarahdeaz, S.F.P., & Murti, K. (2021). The effect of ketogenic diets on neurogenesis and apoptosis in the dentate gyrus of the male rat hippocampus. The Journal of Physiological Sciences, 71(3). https://doi.org/10.1186/s12576-020-00786-7

Jewell, V.C., Mayes, C.B.D., Tubman, T.R.J., Northrop-Clewes, C.A., & Thurnham, D.I. (2004). A comparison of lutein and zeaxanthin concentrations in formula and human milk samples from Northern Ireland mothers. European Journal of Clinical Nutrition, 58(1), 90–97. https://doi.org/10.1038/sj.ejcn.1601753

Khan, M. S., Muhammad, T., Ikram M., Kim, M. O. (2019). Dietary supplementation of the antioxidant Ccurcumin halts systemic LPS-induced neuroinflammation-associated neurodegeneration and memory/synaptic impairment via the JNK/NF-κB/Akt signaling pathway in adult rats. Oxidative Medicine and Cellular Longevity, 23. https://doi.org/10.1155/2019/7860650

Krishna, T. C., Najda, A., Bains, A., Tosif, M. M., Papliński, R., Kapłan, M., & Chawla, P. (2021). Influence of Ultra-Heat Treatment on Properties of Milk Proteins. Polymers, 13(18), 3164. https://doi.org/10.3390/polym13183164

Lemaire, M., Le Huërou-Luron, I., & Blat, S. (2018). Effects of infant formula composition on long-term metabolic health. Journal of Developmental Origins of Health and Disease, 9(6), 573–589. https://doi.org/10.1017/S2040174417000964

Lorenzo, I. S., Tonato, A. M. C., De, A., & Puentes, G. (2019). The Effect of an Infant Formula Supplemented with AA and DHA on Fatty Acid Levels of Infants with Different FADS Genotypes: The COGNIS Study. Nutrients, 11(3), 602. https://doi.org/10.3390/nu11030602

Lubetzky, R., Sever, O., Mimouni, F. B., & Mandel, D. (2015). Human milk macronutrients content: Effect of advanced maternal age. Breastfeeding Medicine, 10(9), 433–436. https://doi.org/10.1089/bfm.2015.0072

Meek, J. Y., & Noble, L. (2022). Policy Statement: Breastfeeding and the Use of Human Milk. Pediatrics, 150(1), e2022057988. https://doi.org/10.1542/peds.2022-057988

McEachern, E. P., Coley, A. A., Yang, S. S., & Gao, W. J. (2020). PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology, 15(179). https://doi.org/10.1016/j.neuropharm.2020.108277

Moore, C. L., Savenka, A. V., & Basnakian, A. G. (2021).TUNEL Assay: A powerful tool for kidney injury evaluation. International Journal of Molecular Sciences, 22(1), 412. https://doi.org/10.3390/ijms22010412

Nakamura, H., Iwamoto, M., Washida, K., Sekine, K., Takase, M., Park, B.-J., Morikawa, T., & Miyazaki, Y. (2010). Influences of casein hydrolysate ingestion on cerebral activity, autonomic nerve activity, and anxiety. Journal of Physiologycal Anthropology, 29(3), 103–108. https://doi.org/10.2114/jpa2.29.103

Nuzzi, G., Di Cicco, M. E., & Peroni, D. G. (2021). Breastfeeding and allergic diseases: What’s New? Children, 8(5), 330. PubMed. https://doi.org/10.3390/children8050330

O’Kennedy, B. T., & Mounsey, J. S. (2006). Control of heat-induced aggregation of whey proteins using casein. Journal of Agricultural and Food Chemistry, 54(15), 5637–5642. https://doi.org/10.1021/jf0607866

Plunkett, B. A., Mele, L., Casey, B. M., Varner, M. W., Sorokin, Y., Reddy, U. M., Wapner, R. J., Thorp Jr, J. M., Saade, G. R., Tita, A. T. N., Rouse, D. J., Sibai, B., Mercer, B. M., Tolosa, J. E., & Caritis, S. N. (2021). Association of breastfeeding and child IQ score at age 5 years. Obstetrics and Gynecology, 137(4), 561–570. https://doi.org/10.1097/AOG.0000000000004314

Preissmann, D., Leuba, G., Savary, C., Vernay, A., Kraftsik, R., Riederer, I.M., Schenk, F., Riederer, B.M., & Savioz, A. (2012). Increased postsynaptic density protein-95 expression in the frontal cortex of aged cognitively impaired rats. Experimental Biology and Medicine, 237(11), 1331-1340. https://doi.org/10.1258/ebm.2012.012020

Salim, Y. M., & Stones, W. (2020). Determinants of exclusive breastfeeding in infants of six months and below in Malawi: A cross-sectional study. BMC Pregnancy and Childbirth, 20(1), 472–472. https://doi.org/10.1186/s12884-020-03160-y

Sánchez-infantes, D., Cereijo, R., Sebastiani, G., Pérez-cruz, M., Villarroya, F., & Ibáñez, L. (2018). Nerve growth factor levels in term human infants: Relationship to prenatal growth and early postnatal feeding. International Journal of Endocrinology, 2018(1), 23. https://doi.org/10.1155/2018/7562702

Sankar, M. J., Sinha, B., Chowdhury, R., Bhandari, N., Taneja, S., Martines, J., & Bahl, R. (2015). Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis. Acta Paediatrica, 104(S467), 3–13. https://doi.org/10.1111/apa.13147

Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106(107), 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

Talpos, J. C., Dias, R., Bussey, T. J., & Saksida, L. M. (2008). Hippocampal lesions in rats impair learning and memory for locations on a touch-sensitive computer screen: the "ASAT" task. Behavioural Brain Research, 192(2), 216-25. https://doi.org/10.1016/j.bbr.2008.04.008

Thakkar, S. K., Giuffrida, F., Bertschy, E., De Castro, A., Destaillats, F., & Lee, L. Y. (2016). Protein eolution of human milk. In Nestlé Nutrition Institute Workshop Series, 86, 77–85. https://doi.org/10.1159/000442725

van den Elsen, L. W. J., Garssen, J., Burcelin, R., & Verhasselt, V. (2019). Shaping the gut Microbiota by breastfeeding: the gateway to allergy prevention? Frontiers in Pediatrics, 7, 47–47. https://doi.org/10.3389/fped. 2019.00047

Yang, X.-D., Wang, L.-K., Wu, H.-Y., & Jiao, L. (2018). Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiology, 18(1), 177. https://doi.org/10.1186/s12871-018-0642-1

Downloads

Published

2024-08-05

How to Cite

Putri, S. S. F., Irfannuddin, I., Kesuma, Y., Murti, K., Darmawan, H. and Koibuchi, N. (2024) “The effect of exclusive breastfeeding on synaptogenesis and cell survival in mouse offspring”, Neuroscience Research Notes, 7(3), pp. 337.1–337.9. doi: 10.31117/neuroscirn.v7i3.337.