Radiofrequency waves increase the brain levels of inflammatory biomarkers, neurotrophin and serotonin

Authors

  • Mansour Azimzadeh 1) Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran 2) Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Fatemeh Radmard Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
  • Gholamali Jelodar Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

DOI:

https://doi.org/10.31117/neuroscirn.v7i2.326

Keywords:

Mobile phone, Radiofrequency, Cytokines, Homocysteine, Nerve growth factor, Serotonin

Abstract

The increase in mobile technology has raised concerns about the potential health effects of mobile phone radiation. The biological impact of exposure to radiofrequency (RF) waves emitted by electronic devices has been extensively studied and is a concern for the public, policymakers, and health researchers. The study aimed to examine the impact of 900 MHz radiofrequency waves on biomarkers such as interleukin (IL)-1α, IL-1β, tumour necrosis factor (TNF)-α, homocysteine, nerve growth factor, and serotonin in rats' serum and brain tissue. Thirty adult male Sprague Dawley rats (200 ± 20g) were randomly assigned to three groups (n=10): control (not exposed to RF), exposed I (2 hours per day), and exposed II (4 hours per day). The exposed groups were exposed to 900 MHz RFW for 30 consecutive days. The results showed that only the exposed group II significantly increased serum serotonin levels compared to the control group (P=0.0496). IL-1α, TNF-α, and nerve growth factor levels in brain tissue increased significantly in both exposed groups compared to the control group (P<0.0001). The control group had significantly lower levels of IL-1β compared to exposed groups I (P=0.0289) and II (P=0.0004). Additionally, serotonin and homocysteine levels in the brains of exposed II were significantly higher compared to the other groups (P<0.0001). The results showed disruptions in all biomarkers, indicating the potential impacts of daily exposure to 900 MHz radiofrequency waves from mobile phones on brain function. This suggests that mobile phone radiation may affect brain function.

References

Aboul Ezz, H. S., Khadrawy, Y. A., Ahmed, N. A., Radwan, N. M., & El Bakry, M. M. (2013). The effect of pulsed electromagnetic radiation from mobile phones on the levels of monoamine neurotransmitters in four different areas of rat brain. European Review for Medical and Pharmacological Sciences, 17(13), 1782–1788. https://pubmed.ncbi.nlm.nih.gov/23852905

Azimzadeh, M., & Jelodar, G. (2019). Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS. Andrologia, 51(9), e13372. https://doi.org/10.1111/and.13372

Azimzadeh, M., & Jelodar, G. (2020a). The protective effect of vitamin supplementation (E and E + C) on passive avoidance learning and memory during exposure to 900 MHz RFW emitted from BTS. Toxicology and Industrial Health, 36(2), 93–98. https://doi.org/10.1177/0748233720912058

Azimzadeh, M., & Jelodar, G. (2020b). Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS–antenna model and the protective role of vitamin E. Journal of Animal Physiology and Animal Nutrition, 104(5), 1568–1574. https://doi.org/10.1111/jpn.13360

Azimzadeh, M., & Jelodar, G. (2020c). Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicology and Industrial Health, 36(12), 1024–1030. https://doi.org/10.1177/0748233720973143

Azimzadeh, M., Jelodar, G., Namazi, F., & Soleimani, F. (2018). Exposure to radiofrequency wave (RFW) generated by a base transceiver stations (BTS) antenna model affects learning and memory in female more than male rats. International Journal of Radiation Research, 16(4), 487–491. http://ijrr.com/article-1-2402-en.html

Bayas, A., Kruse, N., Moriabadi, N., Weber, F., Hummel, V., Wohleben, G., Gold, R., Toyka, K., & Rieckmann, P. (2003). Modulation of cytokine mRNA expression by brain-derived neurotrophic factor and nerve growth factor in human immune cells. Neuroscience Letters, 335(3), 155–158. https://doi.org/10.1016/s0304-3940(02)01152-7

Berry, A., Bindocci, E., & Alleva, E. (2012). NGF, brain and behavioral plasticity. Neural Plasticity, 2012, 1–9. https://doi.org/10.1155/2012/784040

Bertagna, F., Lewis, R., Silva, S. R. P., McFadden, J., & Jeevaratnam, K. (2021). Effects of electromagnetic fields on neuronal ion channels: a systematic review. Annals of the New York Academy of Sciences, 1499(1), 82–103. https://doi.org/10.1111/nyas.14597

Boldyrev, A., Bryushkova, E., Mashkina, A., & Vladychenskaya, E. (2013). Why is homocysteine toxic for the nervous and immune systems? Current Aging Science, 6(1), 29–36. https://doi.org/10.2174/18746098112059990007

Borowska, M., Winiarska, H., Dworacka, M., Wesołowska, A., Dworacki, G., & Mikołajczak, P. Ł. (2021). The effect of homocysteine on the secretion of IL-1Β, IL-6, IL-10, IL-12 and RANTES by peripheral blood mononuclear cells - an In vitro study. Molecules, 26(21), 6671. https://doi.org/10.3390/molecules26216671

Bourgognon, J., & Cavanagh, J. (2020). The role of cytokines in modulating learning and memory and brain plasticity. Brain and Neuroscience Advances, 4, 239821282097980. https://doi.org/10.1177/2398212820979802

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Carhart-Harris, R., & Nutt, D. (2017). Serotonin and brain function: a tale of two receptors. Journal of Psychopharmacology, 31(9), 1091–1120. https://doi.org/10.1177/0269881117725915

Celada, P., Bortolozzi, A., & Artigas, F. (2013a). Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs, 27(9), 703–716. https://doi.org/10.1007/s40263-013-0071-0

Celada, P., Puig, M. V., & Artigas, F. (2013b). Serotonin modulation of cortical neurons and networks. Frontiers in Integrative Neuroscience, 7, 25. https://doi.org/10.3389/fnint.2013.00025

Eris, A. H., Kiziltan, H. S., Meral, I., Genc, H., Trabzon, M., Seyithanoglu, H., Yagci, B., & Uysal, O. (2015). Effect of short-term 900 MHz low level electromagnetic radiation exposure on blood serotonin and glutamate levels. Bratislava Medical Journal, 116(02), 101–103. https://doi.org/10.4149/bll_2015_019

Fan, W., Qian, F., Ma, Q., Zhang, P., Chen, T., Chen, C., Zhang, Y., Deng, P., Zhou, Z., & Yu, Z. (2015). 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. International Journal of Clinical and Experimental Medicine, 8(5), 7394–7404. https://pubmed.ncbi.nlm.nih.gov/26221281

Fang, K., Cheng, F., Huang, Y., Chung, S., Jian, Z., & Lin, M. (2013). Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biological Trace Element Research, 152(1), 66–74. https://doi.org/10.1007/s12011-012-9596-1

Fresegna, D., Bullitta, S., Musella, A., Rizzo, F. R., De Vito, F., Guadalupi, L., Caioli, S., Balletta, S., Sanna, K., Dolcetti, E., Vanni, V., Bruno, A., Buttari, F., Bassi, M. S., Mandolesi, G., Centonze, D., & Gentile, A. (2020). Re-examining the role of TNF in MS pathogenesis and therapy. Cells, 9(10), 2290. https://doi.org/10.3390/cells9102290

Hensler, J. G. (2010). Serotonin in mood and emotion. Handbook of Behavioral Neuroscience, 21, 367–378. https://doi.org/10.1016/s1569-7339(10)70090-4

Hepburn, L., Prajsnar, T. K., Klapholz, C., Moreno, P., Loynes, C. A., Ogryzko, N. V., Brown, K., Schiebler, M., Hegyi, K., Antrobus, R., Hammond, K. L., Connolly, J., Ochoa, B., Bryant, C., Otto, M., Surewaard, B., Seneviratne, S. L., Grogono, D. M., Cachat, J., . . . Floto, R. A. (2014). A Spaetzle-like role for nerve growth factor in vertebrate immunity to Staphylococcus aureus. Science, 346(6209), 641–646. https://doi.org/10.1126/science.1258705

Herrera, J. L., Vigneulle, R. M., Gage, T., MacVittie, T. J., Nold, J. B., & Dubois, A. (1995). Effect of radiation and radioprotection on small intestinal function in canines. Digestive Diseases and Sciences, 40(1), 211–218. https://doi.org/10.1007/bf02063968

Ikeda, K., Shinmura, Y., Mizoe, H., Yoshizawa, H., Yoshida, A., Kanao, S., Sumitani, H., Hasebe, S., Motomura, T., Yamakawa, T., Mizuno, F., Otaka, Y., & Hirose, H. (2002). No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro. Bioelectromagnetics, 24(1), 21–31. https://doi.org/10.1002/bem.10062

Ismail, S., Ali, R., Hassan, H., & Abd El-Rahman, D. (2015). Effect of exposure to electromagnetic fields (EMFs) on monoamine neurotransmitters of newborn rats. Biochemistry & Physiology, 4(2), 156. https://doi.org/doi:10.4172/2168-9652.1000156

Jelodar, G., Azimzadeh, M., Radmard, F., & Darvishhoo, N. (2021). Alteration of intrapancreatic serotonin, homocysteine, TNF-α, and NGF levels as predisposing factors for diabetes following exposure to 900-MHz waves. Toxicology and Industrial Health, 37(8), 496–503. https://doi.org/10.1177/07482337211022634

Jenkins, T. A., Nguyen, J. C. D., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1), 56. https://doi.org/10.3390/nu8010056

Jenne, C. N., & Kubes, P. (2015). Platelets in inflammation and infection. Platelets, 26(4), 286–292. https://doi.org/10.3109/09537104.2015.1010441

Kamat, P. K., Kyles, P., Kalani, A., & Tyagi, N. (2016). Hydrogen sulfide ameliorates homocysteine-Induced Alzheimer’s Disease-Like pathology, Blood–Brain barrier disruption, and synaptic disorder. Molecular Neurobiology, 53(4), 2451–2467. https://doi.org/10.1007/s12035-015-9212-4

Kim, J. H., Yu, D., Huh, Y. H., Lee, E. H., Kim, H., & Kim, H. R. (2017). Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Scientific Reports, 7, 41129. https://doi.org/10.1038/srep41129

Krueger, J. M. (2008). The role of cytokines in sleep regulation. Current Pharmaceutical Design, 14(32), 3408–3416. https://doi.org/10.2174/138161208786549281

Lehotský, J., Tothová, B., Kovalská, M., Dobrota, D., Beňová, A., Kalenská, D., & Kaplán, P. (2016). Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Frontiers in Neuroscience, 10, 538. https://doi.org/10.3389/fnins.2016.00538

Li, C., Li, J., Li, Y., Lang, S., Yougbaré, I., Zhu, G., Chen, P., & Ni, H. (2012). Crosstalk between platelets and the immune system: old systems with new discoveries. Advances in Hematology, 2012, 1–14. https://doi.org/10.1155/2012/384685

Li, F., Chang, J., Lv, Y., Xu, D., Chen, J., & Sun, X. (2017). Impact of electromagnetic irradiation produced by 3G mobile phone on brain neurotransmitters in mice during growth and development period. Biomedical Research, 28(14), 6220–6224. https://www.alliedacademies.org/articles/impact-of-electromagnetic-irradiation-produced-by-3g-mobile-phone-on-brain-neurotransmitters-in-mice-during-growth-and-development-7959.html

Li, J., Li, Q., Du, H., Wang, Y., You, S., Wang, F., Xu, X., Cheng, J., Cao, Y., Liu, C., & Hu, L. (2015). Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. International Journal of Molecular Sciences, 16(12), 12560–12577. https://doi.org/10.3390/ijms160612560

Li, Y., Wu, F., Zhou, M., Zhou, J., Cui, S., Guo, J., Wu, J., & He, L. (2022). ProNGF/NGF modulates autophagy and apoptosis through PI3K/Akt/mTOR and ERK signaling pathways following cerebral ischemia-reperfusion in rats. Oxidative Medicine and Cellular Longevity, 2022, 1–16. https://doi.org/10.1155/2022/6098191

Liew, F. Y., Xu, D., Brint, E. K., & O’Neill, L. a. J. (2005). Negative regulation of toll-like receptor-mediated immune responses. Nature Reviews. Immunology, 5(6), 446–458. https://doi.org/10.1038/nri1630

Longo, F., Yang, T., Hamilton, S., Hyde, J., Walker, J., Jennes, L., Stach, R., & Sisken, B. (1999). Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. Journal of Neuroscience Research, 55(2), 230–237. https://doi.org/10.1002/(sici)1097-4547(19990115)55:2

Mahaki, H., Jabarivasal, N., Sardarian, K., & Zamani, A. (2020). Effects of various densities of 50 Hz electromagnetic field on serum IL-9, IL-10, and TNF-Α levels. International Journal of Occupational and Environmental Medicine, 11(1), 24–32. https://doi.org/10.15171/ijoem.2020.1572

Mahaki, H., Tanzadehpanah, H., Jabarivasal, N., Sardanian, K., & Zamani, A. (2019). A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 38(1), 84–95. https://doi.org/10.1080/15368378.2018.1545668

Masson, J., & Hamon, M. (2009). Monoamine transporters: Focus on the regulation of serotonin transporter by cytokines. Encyclopedia of Neuroscience, 2009, 921–929. https://doi.org/10.1016/b978-008045046-9.01150-5

Minnone, G., De Benedetti, F., & Bracci-Laudiero, L. (2017). NGF and its receptors in the regulation of inflammatory response. International Journal of Molecular Sciences, 18(5), 1028. https://doi.org/10.3390/ijms18051028

Monet, M. C., & Quan, N. (2023). Complex neuroimmune involvement in neurodevelopment: a mini-review. Journal of Inflammation Research, 16, 2979–2991. https://doi.org/10.2147/jir.s410562

National Research Council. (2011). Guide for the care and use of Laboratory animals (8th ed.). National Academies Press, Washington. https://doi.org/10.17226/12910

Park, S. Y., Kang, M. J., & Han, J. S. (2018). Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Molecular Brain, 11(1), 39. https://doi.org/10.1186/s13041-018-0383-6

Patruno, A., Ferrone, A., Costantini, E., Franceschelli, S., Pesce, M., Speranza, L., Amerio, P., D’Angelo, C., Felaco, M., Grilli, A., & Reale, M. (2018). Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Proliferation, 51(2), e12432. https://doi.org/10.1111/cpr.12432

Said, U. Z., Saada, H. N., Abd-Alla, M. S., Elsayed, M. E., & Amin, A. M. (2012). Hesperidin attenuates brain biochemical changes of irradiated rats. International Journal of Radiation Biology, 88(8), 613–618. https://doi.org/10.3109/09553002.2012.694008

Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L., & Persson, B. R. R. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives, 111(7), 881–883. https://doi.org/10.1289/ehp.6039

Shah, R., Courtiol, E., Castellanos, F. X., & Teixeira, C. M. (2018). Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood. Frontiers in Behavioral Neuroscience, 12, 114. https://doi.org/10.3389/fnbeh.2018.00114

Sırav, B., & Seyhan, N. (2016). Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood–brain barrier in male & female rats. Journal of Chemical Neuroanatomy, 75, 123–127. https://doi.org/10.1016/j.jchemneu.2015.12.010

Škovierová, H., Mahmood, S., Blahovcová, E., Hatok, J., Lehotský, J., & Murín, R. (2015). Effect of homocysteine on survival of human glial cells. Physiological Research, 64(5), 747–754. https://doi.org/10.33549/physiolres.932897

Smith, A. D., Refsum, H., Bottiglieri, T., Fenech, M., Hooshmand, B., McCaddon, A., Miller, J. W., Rosenberg, I. H., & Obeid, R. (2018). Homocysteine and dementia: an international consensus statement. Journal of Alzheimer’s Disease, 62(2), 561–570. https://doi.org/10.3233/jad-171042

Terry, N., & Margolis, K. G. (2017). Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handbook of experimental pharmacology, 239, 319–342. https://doi.org/10.1007/164_2016_103

Testylier, G., Tonduli, L., Malabiau, R., & Debouzy, J. (2002). Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics, 23(4), 249–255. https://doi.org/10.1002/bem.10008

The International Commission on Non-Ionizing Radiation Protection (2020). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Physics, 118(5), 483-524. https://doi.org/10.1097/hp.0000000000001210

Witteveen, J. S., Middelman, A., Van Hulten, J. A., Martens, G. J. M., Homberg, J. R., & Kolk, S. M. (2013). Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Frontiers in Cellular Neuroscience, 7, 143. https://doi.org/10.3389/fncel.2013.00143

Wu, H., Wang, D., Shu, Z., Zhou, H., Zuo, H., Wang, S., Li, Y., Xu, X., Li, N., & Peng, R. (2012). Cytokines produced by microwave-radiated Sertoli cells interfere with spermatogenesis in rat testis. Andrologia, 44, 590–599. https://doi.org/10.1111/j.1439-0272.2011.01232.x

Yang, J., Ran, M., Li, H., Lin, Y., Ma, K., Yang, Y., Fu, X., & Yang, S. (2022). New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Frontiers in Molecular Neuroscience, 15, 1013933. https://doi.org/10.3389/fnmol.2022.1013933

Zhou, J. X., Ding, G. R., Zhang, J., Zhou, Y. C., Zhang, Y. J., & Guo, G. Z. (2013). Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model. Biomedical and Environmental Sciences, 26(2), 128–137. https://doi.org/10.3967/0895-3988.2013.02.007

Zipp, F., Bittner, S., & Schafer, D. P. (2023). Cytokines as emerging regulators of central nervous system synapses. Immunity, 56(5), 914–925. https://doi.org/10.1016/j.immuni.2023.04.011

Downloads

Published

2024-06-21

How to Cite

Azimzadeh, M., Radmard, F. and Jelodar, G. (2024) “Radiofrequency waves increase the brain levels of inflammatory biomarkers, neurotrophin and serotonin”, Neuroscience Research Notes, 7(2), pp. 326.1–326.9. doi: 10.31117/neuroscirn.v7i2.326.