Radiofrequency waves increase the brain levels of inflammatory biomarkers, neurotrophin and serotonin


  • Mansour Azimzadeh 1) Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran 2) Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
  • Fatemeh Radmard Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
  • Gholamali Jelodar Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran



Mobile phone, Radiofrequency, Cytokines, Homocysteine, Nerve growth factor, Serotonin


The increase in mobile technology has raised concerns about the potential health effects of mobile phone radiation. The biological impact of exposure to radiofrequency (RF) waves emitted by electronic devices has been extensively studied and is a concern for the public, policymakers, and health researchers. The study aimed to examine the impact of 900 MHz radiofrequency waves on biomarkers such as interleukin (IL)-1α, IL-1β, tumour necrosis factor (TNF)-α, homocysteine, nerve growth factor, and serotonin in rats' serum and brain tissue. Thirty adult male Sprague Dawley rats (200 ± 20g) were randomly assigned to three groups (n=10): control (not exposed to RF), exposed I (2 hours per day), and exposed II (4 hours per day). The exposed groups were exposed to 900 MHz RFW for 30 consecutive days. The results showed that only the exposed group II significantly increased serum serotonin levels compared to the control group (P=0.0496). IL-1α, TNF-α, and nerve growth factor levels in brain tissue increased significantly in both exposed groups compared to the control group (P<0.0001). The control group had significantly lower levels of IL-1β compared to exposed groups I (P=0.0289) and II (P=0.0004). Additionally, serotonin and homocysteine levels in the brains of exposed II were significantly higher compared to the other groups (P<0.0001). The results showed disruptions in all biomarkers, indicating the potential impacts of daily exposure to 900 MHz radiofrequency waves from mobile phones on brain function. This suggests that mobile phone radiation may affect brain function.


Aboul Ezz, H. S., Khadrawy, Y. A., Ahmed, N. A., Radwan, N. M., & El Bakry, M. M. (2013). The effect of pulsed electromagnetic radiation from mobile phones on the levels of monoamine neurotransmitters in four different areas of rat brain. European Review for Medical and Pharmacological Sciences, 17(13), 1782–1788.

Azimzadeh, M., & Jelodar, G. (2019). Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS. Andrologia, 51(9), e13372.

Azimzadeh, M., & Jelodar, G. (2020a). The protective effect of vitamin supplementation (E and E + C) on passive avoidance learning and memory during exposure to 900 MHz RFW emitted from BTS. Toxicology and Industrial Health, 36(2), 93–98.

Azimzadeh, M., & Jelodar, G. (2020b). Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS–antenna model and the protective role of vitamin E. Journal of Animal Physiology and Animal Nutrition, 104(5), 1568–1574.

Azimzadeh, M., & Jelodar, G. (2020c). Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicology and Industrial Health, 36(12), 1024–1030.

Azimzadeh, M., Jelodar, G., Namazi, F., & Soleimani, F. (2018). Exposure to radiofrequency wave (RFW) generated by a base transceiver stations (BTS) antenna model affects learning and memory in female more than male rats. International Journal of Radiation Research, 16(4), 487–491.

Bayas, A., Kruse, N., Moriabadi, N., Weber, F., Hummel, V., Wohleben, G., Gold, R., Toyka, K., & Rieckmann, P. (2003). Modulation of cytokine mRNA expression by brain-derived neurotrophic factor and nerve growth factor in human immune cells. Neuroscience Letters, 335(3), 155–158.

Berry, A., Bindocci, E., & Alleva, E. (2012). NGF, brain and behavioral plasticity. Neural Plasticity, 2012, 1–9.

Bertagna, F., Lewis, R., Silva, S. R. P., McFadden, J., & Jeevaratnam, K. (2021). Effects of electromagnetic fields on neuronal ion channels: a systematic review. Annals of the New York Academy of Sciences, 1499(1), 82–103.

Boldyrev, A., Bryushkova, E., Mashkina, A., & Vladychenskaya, E. (2013). Why is homocysteine toxic for the nervous and immune systems? Current Aging Science, 6(1), 29–36.

Borowska, M., Winiarska, H., Dworacka, M., Wesołowska, A., Dworacki, G., & Mikołajczak, P. Ł. (2021). The effect of homocysteine on the secretion of IL-1Β, IL-6, IL-10, IL-12 and RANTES by peripheral blood mononuclear cells - an In vitro study. Molecules, 26(21), 6671.

Bourgognon, J., & Cavanagh, J. (2020). The role of cytokines in modulating learning and memory and brain plasticity. Brain and Neuroscience Advances, 4, 239821282097980.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

Carhart-Harris, R., & Nutt, D. (2017). Serotonin and brain function: a tale of two receptors. Journal of Psychopharmacology, 31(9), 1091–1120.

Celada, P., Bortolozzi, A., & Artigas, F. (2013a). Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs, 27(9), 703–716.

Celada, P., Puig, M. V., & Artigas, F. (2013b). Serotonin modulation of cortical neurons and networks. Frontiers in Integrative Neuroscience, 7, 25.

Eris, A. H., Kiziltan, H. S., Meral, I., Genc, H., Trabzon, M., Seyithanoglu, H., Yagci, B., & Uysal, O. (2015). Effect of short-term 900 MHz low level electromagnetic radiation exposure on blood serotonin and glutamate levels. Bratislava Medical Journal, 116(02), 101–103.

Fan, W., Qian, F., Ma, Q., Zhang, P., Chen, T., Chen, C., Zhang, Y., Deng, P., Zhou, Z., & Yu, Z. (2015). 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. International Journal of Clinical and Experimental Medicine, 8(5), 7394–7404.

Fang, K., Cheng, F., Huang, Y., Chung, S., Jian, Z., & Lin, M. (2013). Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biological Trace Element Research, 152(1), 66–74.

Fresegna, D., Bullitta, S., Musella, A., Rizzo, F. R., De Vito, F., Guadalupi, L., Caioli, S., Balletta, S., Sanna, K., Dolcetti, E., Vanni, V., Bruno, A., Buttari, F., Bassi, M. S., Mandolesi, G., Centonze, D., & Gentile, A. (2020). Re-examining the role of TNF in MS pathogenesis and therapy. Cells, 9(10), 2290.

Hensler, J. G. (2010). Serotonin in mood and emotion. Handbook of Behavioral Neuroscience, 21, 367–378.

Hepburn, L., Prajsnar, T. K., Klapholz, C., Moreno, P., Loynes, C. A., Ogryzko, N. V., Brown, K., Schiebler, M., Hegyi, K., Antrobus, R., Hammond, K. L., Connolly, J., Ochoa, B., Bryant, C., Otto, M., Surewaard, B., Seneviratne, S. L., Grogono, D. M., Cachat, J., . . . Floto, R. A. (2014). A Spaetzle-like role for nerve growth factor in vertebrate immunity to Staphylococcus aureus. Science, 346(6209), 641–646.

Herrera, J. L., Vigneulle, R. M., Gage, T., MacVittie, T. J., Nold, J. B., & Dubois, A. (1995). Effect of radiation and radioprotection on small intestinal function in canines. Digestive Diseases and Sciences, 40(1), 211–218.

Ikeda, K., Shinmura, Y., Mizoe, H., Yoshizawa, H., Yoshida, A., Kanao, S., Sumitani, H., Hasebe, S., Motomura, T., Yamakawa, T., Mizuno, F., Otaka, Y., & Hirose, H. (2002). No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro. Bioelectromagnetics, 24(1), 21–31.

Ismail, S., Ali, R., Hassan, H., & Abd El-Rahman, D. (2015). Effect of exposure to electromagnetic fields (EMFs) on monoamine neurotransmitters of newborn rats. Biochemistry & Physiology, 4(2), 156.

Jelodar, G., Azimzadeh, M., Radmard, F., & Darvishhoo, N. (2021). Alteration of intrapancreatic serotonin, homocysteine, TNF-α, and NGF levels as predisposing factors for diabetes following exposure to 900-MHz waves. Toxicology and Industrial Health, 37(8), 496–503.

Jenkins, T. A., Nguyen, J. C. D., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1), 56.

Jenne, C. N., & Kubes, P. (2015). Platelets in inflammation and infection. Platelets, 26(4), 286–292.

Kamat, P. K., Kyles, P., Kalani, A., & Tyagi, N. (2016). Hydrogen sulfide ameliorates homocysteine-Induced Alzheimer’s Disease-Like pathology, Blood–Brain barrier disruption, and synaptic disorder. Molecular Neurobiology, 53(4), 2451–2467.

Kim, J. H., Yu, D., Huh, Y. H., Lee, E. H., Kim, H., & Kim, H. R. (2017). Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Scientific Reports, 7, 41129.

Krueger, J. M. (2008). The role of cytokines in sleep regulation. Current Pharmaceutical Design, 14(32), 3408–3416.

Lehotský, J., Tothová, B., Kovalská, M., Dobrota, D., Beňová, A., Kalenská, D., & Kaplán, P. (2016). Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Frontiers in Neuroscience, 10, 538.

Li, C., Li, J., Li, Y., Lang, S., Yougbaré, I., Zhu, G., Chen, P., & Ni, H. (2012). Crosstalk between platelets and the immune system: old systems with new discoveries. Advances in Hematology, 2012, 1–14.

Li, F., Chang, J., Lv, Y., Xu, D., Chen, J., & Sun, X. (2017). Impact of electromagnetic irradiation produced by 3G mobile phone on brain neurotransmitters in mice during growth and development period. Biomedical Research, 28(14), 6220–6224.

Li, J., Li, Q., Du, H., Wang, Y., You, S., Wang, F., Xu, X., Cheng, J., Cao, Y., Liu, C., & Hu, L. (2015). Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. International Journal of Molecular Sciences, 16(12), 12560–12577.

Li, Y., Wu, F., Zhou, M., Zhou, J., Cui, S., Guo, J., Wu, J., & He, L. (2022). ProNGF/NGF modulates autophagy and apoptosis through PI3K/Akt/mTOR and ERK signaling pathways following cerebral ischemia-reperfusion in rats. Oxidative Medicine and Cellular Longevity, 2022, 1–16.

Liew, F. Y., Xu, D., Brint, E. K., & O’Neill, L. a. J. (2005). Negative regulation of toll-like receptor-mediated immune responses. Nature Reviews. Immunology, 5(6), 446–458.

Longo, F., Yang, T., Hamilton, S., Hyde, J., Walker, J., Jennes, L., Stach, R., & Sisken, B. (1999). Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. Journal of Neuroscience Research, 55(2), 230–237.

Mahaki, H., Jabarivasal, N., Sardarian, K., & Zamani, A. (2020). Effects of various densities of 50 Hz electromagnetic field on serum IL-9, IL-10, and TNF-Α levels. International Journal of Occupational and Environmental Medicine, 11(1), 24–32.

Mahaki, H., Tanzadehpanah, H., Jabarivasal, N., Sardanian, K., & Zamani, A. (2019). A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 38(1), 84–95.

Masson, J., & Hamon, M. (2009). Monoamine transporters: Focus on the regulation of serotonin transporter by cytokines. Encyclopedia of Neuroscience, 2009, 921–929.

Minnone, G., De Benedetti, F., & Bracci-Laudiero, L. (2017). NGF and its receptors in the regulation of inflammatory response. International Journal of Molecular Sciences, 18(5), 1028.

Monet, M. C., & Quan, N. (2023). Complex neuroimmune involvement in neurodevelopment: a mini-review. Journal of Inflammation Research, 16, 2979–2991.

National Research Council. (2011). Guide for the care and use of Laboratory animals (8th ed.). National Academies Press, Washington.

Park, S. Y., Kang, M. J., & Han, J. S. (2018). Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Molecular Brain, 11(1), 39.

Patruno, A., Ferrone, A., Costantini, E., Franceschelli, S., Pesce, M., Speranza, L., Amerio, P., D’Angelo, C., Felaco, M., Grilli, A., & Reale, M. (2018). Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Proliferation, 51(2), e12432.

Said, U. Z., Saada, H. N., Abd-Alla, M. S., Elsayed, M. E., & Amin, A. M. (2012). Hesperidin attenuates brain biochemical changes of irradiated rats. International Journal of Radiation Biology, 88(8), 613–618.

Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L., & Persson, B. R. R. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives, 111(7), 881–883.

Shah, R., Courtiol, E., Castellanos, F. X., & Teixeira, C. M. (2018). Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood. Frontiers in Behavioral Neuroscience, 12, 114.

Sırav, B., & Seyhan, N. (2016). Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood–brain barrier in male & female rats. Journal of Chemical Neuroanatomy, 75, 123–127.

Škovierová, H., Mahmood, S., Blahovcová, E., Hatok, J., Lehotský, J., & Murín, R. (2015). Effect of homocysteine on survival of human glial cells. Physiological Research, 64(5), 747–754.

Smith, A. D., Refsum, H., Bottiglieri, T., Fenech, M., Hooshmand, B., McCaddon, A., Miller, J. W., Rosenberg, I. H., & Obeid, R. (2018). Homocysteine and dementia: an international consensus statement. Journal of Alzheimer’s Disease, 62(2), 561–570.

Terry, N., & Margolis, K. G. (2017). Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handbook of experimental pharmacology, 239, 319–342.

Testylier, G., Tonduli, L., Malabiau, R., & Debouzy, J. (2002). Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics, 23(4), 249–255.

The International Commission on Non-Ionizing Radiation Protection (2020). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Physics, 118(5), 483-524.

Witteveen, J. S., Middelman, A., Van Hulten, J. A., Martens, G. J. M., Homberg, J. R., & Kolk, S. M. (2013). Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Frontiers in Cellular Neuroscience, 7, 143.

Wu, H., Wang, D., Shu, Z., Zhou, H., Zuo, H., Wang, S., Li, Y., Xu, X., Li, N., & Peng, R. (2012). Cytokines produced by microwave-radiated Sertoli cells interfere with spermatogenesis in rat testis. Andrologia, 44, 590–599.

Yang, J., Ran, M., Li, H., Lin, Y., Ma, K., Yang, Y., Fu, X., & Yang, S. (2022). New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Frontiers in Molecular Neuroscience, 15, 1013933.

Zhou, J. X., Ding, G. R., Zhang, J., Zhou, Y. C., Zhang, Y. J., & Guo, G. Z. (2013). Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model. Biomedical and Environmental Sciences, 26(2), 128–137.

Zipp, F., Bittner, S., & Schafer, D. P. (2023). Cytokines as emerging regulators of central nervous system synapses. Immunity, 56(5), 914–925.




How to Cite

Azimzadeh, M., Radmard, F. and Jelodar, G. (2024) “Radiofrequency waves increase the brain levels of inflammatory biomarkers, neurotrophin and serotonin”, Neuroscience Research Notes, 7(2), pp. 326.1–326.9. doi: 10.31117/neuroscirn.v7i2.326.