Gene expression analysis in plasma of patients with Alzheimer's disease

Authors

  • Seda Kusoglu Gultekin Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
  • Irem Gulfem Albayrak Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
  • Yunus Diler Neurology Clinic, Umraniye Research and Training Hospital, Istanbul, Turkey.
  • Ayse Destina Yalcin Neurology Clinic, Umraniye Research and Training Hospital, Istanbul, Turkey.
  • Belkis Atasever Arslan Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.

DOI:

https://doi.org/10.31117/neuroscirn.v7i1.302

Keywords:

Alzheimer's disease, Gene expression, mRNA profiling

Abstract

Alzheimer's disease (AD), which is a neurodegenerative disease, cannot be noticed until severe symptoms are observed. This poses a global challenge as the average human lifespan increases, making it a concern for the entire world population. Early diagnosis can play a crucial role in slowing the progression of the disease, thereby enhancing the quality of life for both the patient and their relatives. AD has been linked to alterations in mRNA expressions. The objective of the presented study was to determine whether there were significant differences in gene expression in blood plasma between Alzheimer's patients and healthy controls. MAPT, APP, Tubb3, TrkB, and CDC42 genes were selected as target genes due to their potential associations with AD. To analyse mRNA expression levels in the control group and AD patients, the real-time PCR (qPCR) method was performed. The findings indicate that MAPT, APP, Tubb3, and CDC42 genes' expression levels were significantly downregulated by 1.09, 1.08, 1.09, and 1.14 times, respectively (p<0.05) in AD patients. Although the TrkB gene expression appeared to be downregulated by 1.03 times in the AD group, it is not statistically different. Given the molecular associations between the pathways of the target genes and AD, changes in the expression of these genes may contribute to the pathogenesis of AD. They may represent potential biomarkers for early diagnosis.

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 270–279. https://doi.org/10.1016/J.JALZ.2011.03.008

Ashraf, G. M., Chibber, S., Mohammad, K. Zaidi, S., Tabrez, S., Ahmad, A., Shakil, S., Mushtaq, G., S. Baeesa, S., & A. Kamal, M. (2016). Recent updates on the association between Alzheimer's disease and vascular dementia. Medicinal Chemistry, 12(3), 226–237. https://doi.org/10.2174/1573406411666151030111820

Aydin, D., Weyer, S. W., & Müller, U. C. (2012). Functions of the APP gene family in the nervous system: insights from mouse models. Experimental Brain Research, 217(3–4), 423–434. https://doi.org/10.1007/S00221-011-2861-2

Caillet-Boudin, M. L., Buée, L., Sergeant, N., & Lefebvre, B. (2015). Regulation of human MAPT gene expression. Molecular Neurodegeneration, 10, 28. https://doi.org/10.1186/s13024-015-0025-8

Chew, S., Balasubramanian, R., Chan, W. M., Kang, P. B., Andrews, C., Webb, B. D., MacKinnon, S. E., Oystreck, D. T., Rankin, J., Crawford, T. O., Geraghty, M., Pomeroy, S. L., Crowley, W. F., Jabs, E. W., Hunter, D. G., Grant, P. E., & Engle, E. C. (2013). A novel syndrome caused by the E410K amino acid substitution in the neuronal β-tubulin isotype 3. Brain, 136(2), 522–535. https://doi.org/10.1093/brain/aws345

Coupland, K. G., Mellick, G. D., Silburn, P. A., Mather, K., Armstrong, N. J., Sachdev, P. S., Brodaty, H., Huang, Y., Halliday, G. M., Hallupp, M., Kim, W. S., Dobson-Stone, C., & Kwok, J. B. J. (2014). DNA methylation of the MAPT gene in Parkinson's disease cohorts and modulation by vitamin E In Vitro. Movement Disorders, 29(13), 1606–1614. https://doi.org/10.1002/mds.25784

Fukasawa, J. T., de Labio, R. W., Rasmussen, L. T., de Oliveira, L. C., Chen, E., Villares, J., Tureck, G., de Arruda C. Smith, M., & Payao, S. L. M. (2018). CDK5 and MAPT gene expression in Alzheimer's disease brain samples. Current Alzheimer Research, 15(2), 182–186. https://doi.org/10.2174/1567205014666170713160407

GeneCards. (2023a). MAPT gene - microtubule associated protein tau. https://www.genecards.org/cgi-bin/carddisp.pl?gene=MAPT

GeneCards. (2023b). APP gene - amyloid beta precursor protein. https://www.genecards.org/cgi-bin/carddisp.pl?gene=APP#summaries

GeneCards. (2023c). TUBB3 gene - tubulin beta 3 class III. https://www.genecards.org/cgi-bin/carddisp.pl?gene=TUBB3

GeneCards. (2023d). NTRK2 gene - neurotrophic receptor tyrosine kinase 2. https://www.genecards.org/cgi-bin/carddisp.pl?gene=NTRK2

GeneMANIA. (2023). Human MAPT, APP, Tubb3, TrkB, Cdc42. https://genemania.org/search/homo-sapiens/MAPT/APP/Tubb3/TrkB/Cdc42/

Guo, Y., Huang, Y. Y., Shen, X. N., Chen, S. D., Hu, H., Wang, Z. T., Tan, L., & Yu, J. T. (2021). Characterisation of Alzheimer's tau biomarker discordance using plasma, CSF, and PET. Alzheimer's Research & Therapy, 13(1), 93. https://doi.org/10.1186/s13195-021-00834-3

Hock, C., Heese, K., Hulette, C., Rosenberg, C., & Otten, U. (2000). Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in the hippocampus and cortical areas. Archives of Neurology, 57(6), 846–851. https://doi.org/10.1001/ARCHNEUR.57.6.846

KEGG Pathway (2023a). KEGG orthology K00873. https://www.genome.jp/dbget-bin/get_linkdb?-t+pathway+ko:K04380

KEGG Pathway (2023b). MAPK signaling pathway - Caenorhabditis elegans (nematode). https://www.kegg.jp/pathway/cel04010+CELE_R07G3.1

Kern, A., Roempp, B., Prager, K., Walter, J., & Behl, C. (2006). Down-regulation of endogenous amyloid precursor protein processing due to cellular aging. The Journal of Biological Chemistry, 281(5), 2405–2413. https://doi.org/10.1074/JBC.M505625200

Kim, D. H., Yeo, S. H., Park, J. M., Choi, J. Y., Lee, T. H., Park, S. Y., Ock, M. S., Eo, J., Kim, H. S., & Cha, H. J. (2014). Genetic markers for diagnosis and pathogenesis of Alzheimer's disease. Gene, 545(2), 185–193. https://doi.org/10.1016/J.GENE.2014.05.031

Mairet-Coello, G., Courchet, J., Pieraut, S., Courchet, V., Maximov, A., & Polleux, F. (2013). The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron, 78(1), 94–108. https://doi.org/10.1016/j.neuron.2013.02.003

Mattsson, N., Zetterberg, H., Janelidze, S., Insel, P. S., Andreasson, U., Stomrud, E., Palmqvist, S., Baker, D., Tan Hehir, C. A., Jeromin, A., Hanlon, D., Song, L., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., Hansson, O., & Blennow, K. (2016). Plasma tau in Alzheimer disease. Neurology, 87(17), 1827–1835. https://doi.org/10.1212/WNL.0000000000003246

Mielke, M. M., Hagen, C. E., Xu, J., Chai, X., Vemuri, P., Lowe, V. J., Airey, D. C., Knopman, D. S., Roberts, R. O., Machulda, M. M., Jack, C. R., Petersen, R. C., & Dage, J. L. (2018). Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer's and Dementia, 14(8), 989–997. https://doi.org/10.1016/j.jalz.2018.02.013

Mori, H., Yoshino, Y., Ueno, M., Funahashi, Y., Kumon, H., Ozaki, Y., Yamazaki, K., Ochi, S., Jun-Ichi Iga, |, & Shu-Ichi Ueno, |. (2022). Blood MAPT expression and methylation status in Alzheimer's disease. Psychiatry and Clinical Neurosciences Reports, 1(4), e65. https://doi.org/10.1002/PCN5.65

Nicole, S., White, P. S., Topaloglu, H., Beigthon, P., Salih, M., Hentati, F., & Fontaine, B. (1999). The human CDC42 gene: Genomic organisation, evidence for the existence of a putative pseudogene and exclusion as a SJS1 candidate gene. Human Genetics, 105(1–2), 98–103. https://doi.org/10.1007/s004399900065

Ossenkoppele, R., Reimand, J., Smith, R., Leuzy, A., Strandberg, O., Palmqvist, S., Stomrud, E., Zetterberg, H., Alzheimer's Disease Neuroimaging Initiative, Scheltens, P., Dage, J. L., Bouwman, F., Blennow, K., Mattsson-Carlgren, N., Janelidze, S., & Hansson, O. (2021). Tau PET correlates with different Alzheimer's disease-related features compared to CSF and plasma p-tau biomarkers. EMBO Molecular Medicine, 13(8), e14398. https://doi.org/10.15252/emmm.202114398

Robinson, L., Tang, E., & Taylor, J. P. (2015). Dementia: timely diagnosis and early intervention. The BMJ, 350, h3029. https://doi.org/10.1136/BMJ.H3029

Stoilov, P., Stamm, S., & Castren, E. (2002). Analysis of the human TrkB gene genomic organisation reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochemical and Biophysical Research Communications, 290(3), 1054–1065. https://doi.org/10.1006/bbrc.2001.6301

STRING. (2023). MAPT, APP, TUBB3, NTRK2, CDC42 (human) - STRING interaction network. https://string-db.org/

Sun, R., He, T., Pan, Y., & Katusic, Z. S. (2018). Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging, 10(1), 100–114. https://doi.org/10.18632/AGING.101362

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580. https://doi.org/10.1002/ANA.410300410

Thijssen, E. H., La Joie, R., Wolf, A., Strom, A., Wang, P., Iaccarino, L., Bourakova, V., Cobigo, Y., Heuer, H., Spina, S., VandeVrede, L., Chai, X., Proctor, N. K., Airey, D. C., Shcherbinin, S., Duggan Evans, C., Sims, J. R., Zetterberg, H., Blennow, K., … Boxer, A. L. (2020). Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nature Medicine, 26(3), 387–397. https://doi.org/10.1038/s41591-020-0762-2

Tzen, K. Y., Yang, S. Y., Chen, T. F., Cheng, T. W., Horng, H. E., Wen, H. P., Huang, Y. Y., Shiue, C. Y., & Chiu, M. J. (2014). Plasma Aβ but not tau is related to brain PiB retention in early Alzheimer's disease. ACS Chemical Neuroscience, 5(9), 830–836. https://doi.org/10.1021/cn500101j

Wang, H., Tian, Q., Zhang, J., Liu, H., Zhang, J., Cao, W., Zhang, X., Li, X., Wu, L., Song, M., Kong, Y., Wang, W., & Wang, Y. (2021). Blood transcriptome profiling as potential biomarkers of suboptimal health status: potential utility of novel biomarkers for predictive, preventive, and personalised medicine strategy. EPMA Journal, 12(2), 103–115. https://doi.org/10.1007/s13167-021-00238-1

Waragai, M., Yoshida, M., Mizoi, M., Saiki, R., Kashiwagi, K., Takagi, K., Akatsu, H., Arai, H., Tashiro, J., Yamamoto, T., Uemura, K., Iwai, N., & Igarashi, K. (2012). P2‐076: Increased protein‐conjugated acrolein and beta‐amyloid 40/42 ratio in the plasma in patients with mild cognitive impairment and Alzheimer's disease. Alzheimer’s & Dementia, 8(4S_Part_8), 780. https://doi.org/10.1016/j.jalz.2012.05.780

Yun, S. M., Cho, S. J., Jo, C., Park, M. H., Han, C., & Koh, Y. H. (2020). Elevation of plasma soluble amyloid precursor protein beta in Alzheimer's disease. Archives of Gerontology and Geriatrics, 87, 103995. https://doi.org/10.1016/j.archger.2019.103995

Zhang, Y., & Niu, C. (2022). Relation of CDC42, Th1, Th2, and Th17 cells with cognitive function decline in Alzheimer's disease. Annals of Clinical and Translational Neurology, 9(9), 1428–1436. https://doi.org/10.1002/ACN3.51643

Zuccato, C., Marullo, M., Conforti, P., MacDonald, M. E., Tartari, M., & Cattaneo, E. (2008). Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathology, 18(2), 225–238. https://doi.org/10.1111/J.1750-3639.2007.00111.X

Zvěřová, M. (2018). Alzheimer's disease and blood-based biomarkers - potential contexts of use. Neuropsychiatric Disease and Treatment, 14, 1877–1882. https://doi.org/10.2147/NDT.S172285

Downloads

Published

2024-03-23

How to Cite

Gultekin, S. K., Albayrak, I. G., Diler, Y., Yalcin, A. D. and Arslan, B. A. (2024) “Gene expression analysis in plasma of patients with Alzheimer’s disease”, Neuroscience Research Notes, 7(1), pp. 302.1–302.9. doi: 10.31117/neuroscirn.v7i1.302.