Comparison of deep learning convolutional neural networks method with conventional volume-based morphometry measurement of hippocampal volume in Alzheimer's disease

Authors

  • Nur Shahidatul Nabila Ibrahim Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
  • Subapriya Suppiah 1) Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia. 2) Nuclear Imaging Unit, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Selangor, Malaysia. 3) Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, Selangor, Malaysia 4) Malaysia Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Selangor, Malaysia.
  • Buhari Ibrahim Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
  • Nur Hafizah Mohad Azmi Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
  • Vengkatha Priya Seriramulu Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
  • Mazlyfarina Mohamad Centre for Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
  • Marsyita Hanafi Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia.
  • Hakimah Mohammad Sallehuddin 1) Malaysia Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Selangor, Malaysia. 2) Department of Geriatric, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Selangor, Malaysia.
  • Rizah Mazzuin Razali Department of Medicine, Hospital Kuala Lumpur, Ministry of Health of Malaysia, Kuala Lumpur, Malaysia.
  • Noor Harzana Harrun Pandamaran Health Clinic, Ministry of Health of Malaysia, Selangor, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v6i4.248

Keywords:

Hippocampal volume, Alzheimer's disease, Deep learning, Convolutional neural network

Abstract

Dementia is a spectrum of diseases characterised by a progressive and irreversible decline in cognitive function. Appropriate tools and references are essential for evaluating individuals' cognitive levels, especially hippocampal volume, as it is the commonly used biomarker in detecting Alzheimer's disease (AD). It is important to note that while there is no cure for dementia, early intervention and support can greatly improve the lives of those affected. Our ongoing AD research is being conducted to develop new treatments and improve our understanding of the disease by using voxel-based morphometry (VBM) to compare sensitivity and specificity with the HippoDeep toolbox. We validated AD's hippocampal volume compared to age-matched healthy controls (HC) based on the HippoDeep Model by comparing it with VBM as the reference standard. Significant differences between hippocampal volume in AD and HC have been detected using VBM and HippoDeep analysis.

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008

Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry–The Methods. NeuroImage, 11(6), 805–821. https://doi.org/10.1006/nimg.2000.0582

DeMarshall, C. A., Nägele, E. P., Sarkar, A., Acharya, N. K., Godsey, G., Goldwaser, E. L., Kosciuk, M., Thayasivam, U., Han, M., Belinka, B., & Nagele, R. G. (2016). Detection of Alzheimer’s disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 3(1), 51–62. https://doi.org/10.1016/j.dadm.2016.03.002

Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurology, 6(8), 734–746. https://doi.org/10.1016/s1474-4422(07)70178-3

Ezzati, A., Katz, M. J., Zammit, A. R., Lipton, M. L., Zimmerman, M. E., Sliwinski, M. J., & Lipton, R. B. (2016). Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults. Neuropsychologia, 93, 380–385. https://doi.org/10.1016/j.neuropsychologia.2016.08.016

First, M., Williams, J., Karg, R., Spritzer, R. (2018). Structured clinical interview for DSM-5-Research version (SCID-5-RV). American Psychiatric Association, Arlington.

Hill, D. L. G., Schwarz, A. J., Isaac, M., Pani, L., Vamvakas, S., Hemmings, R., Carrillo, M. C., Yu, P., Sun, J., Beckett, L., Boccardi, M., Brewer, J., Brumfield, M., Cantillon, M., Cole, P. E., Fox, N., Frisoni, G. B., Jack, C., Kelleher, T., Luo, F., Novak, G., Maguire, P., Meibach, R., Patterson, P., Bain, L., Sampaio, C., Raunig, D., Soares, H., Suhy, J., Wang, H., Wolz, R., & Stephenson, D. (2014). Coalition against major diseases/European medicines agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer's disease. Alzheimer's & Dementia, 10(4), 421– 429, e3. https://doi.org/10.1016/j.jalz.2013.07.003

Honeycutt, N. A., Smith, C. D. (1995). Hippocampal volume measurements using magnetic resonance imaging in normal young adults. Journal of Neuroimaging, 5(2), 95–100. https://doi.org/10.1111/jon19955295

Hort, J., O'brien, J. T., Gainotti, G., Pirttila, T., Popescu, B. O., Rektorova, I., Sorbi, S., & Scheltens, P. (2010). EFNS guidelines for the diagnosis and management of Alzheimer's disease. European Journal of Neurology, 17(10), 1236–1248. https://doi.org/10.1111/j.1468-1331.2010.03040.x

Hu, X., Meier, M., & Pruessner, J. (2023). Challenges and opportunities of diagnostic markers of Alzheimer's disease based on structural magnetic resonance imaging. Brain and Behavior, 13(3), e2925, https://doi.org/10.1002/brb3.2925

Hurtz, S., Chow, N., Watson, A. E., Somme, J. H., Goukasian, N., Hwang, K., Morra, J., Elashoff, D., Gao, S., Petersen, R. C., Aisen, P. S., Thompson, P. M., & Apostolova, L. G. (2019). Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability. NeuroImage: Clinical, 21, 101574. https://doi.org/10.1016/j.nicl.2018.10.012

Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021a). Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941–2968. https://doi.org/10.1002/hbm.25369

Ibrahim, B., Suppiah, S., Piersson, A. D., Razali, R. M., Mohamad, M., Hassan, H. A., & Ibrahim, N. (2021b). Cardiovascular risk factors of Alzheimer’s disease and other neurocognitive disorders in Malaysia. Medical Journal of Malaysia, 76(3), 291–297. https://www.e-mjm.org/2021/v76n3/alzheimers-disease.pdf

Kurth, F., Luders, E. & Gaser, C. (2015). Voxel-based morphometry. Brain Mapping, 1, 345-349. https://doi.org/10.1016/B978-0-12-397025-1.00304-3

Pedraza, O., Bowers, D., & Gilmore, R. L. (2004). Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. Journal of the International Neuropsychological Society, 10(5), 664–678. https://doi.org/10.1017/s1355617704105080

Piersson, A. D., Ibrahim, B., Suppiah, S., Mohamad, M., Hassan, H. A., Omar, N., Ibrahim, M. S., Yusoff, A. N., Ibrahim, N., Saripan, M. I., & Razali, R. M. (2021). Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: Research protocol of a case-control study design. PLOS ONE, 16(9), e0252883. https://doi.org/10.1371/journal.pone.0252883

Riello, M., Rusconi, E., & Treccani, B. (2021). The role of brief global cognitive tests and neuropsychological expertise in the detection and differential diagnosis of dementia. Frontiers in Aging Neuroscience, 13, 648310. https://doi.org/10.3389/fnagi.2021.648310

Sarica, A., Vasta, R., Novellino, F., Vaccaro, M. G., Cerasa, A., & Quattrone, A. (2018). MRI asymmetry index of hippocampal subfields increases through the continuum from the mild cognitive impairment to the Alzheimer’s disease. Frontiers in Neuroscience, 12, 576. https://doi.org/10.3389/fnins.2018.00576

Schell, M., Foltyn-Dumitru, M., Bendszus, M., & Vollmuth, P. (2023). Automated hippocampal segmentation algorithms evaluated in stroke patients. Scientific Reports, 13, 11712. https://doi.org/10.1038/s41598-023-38833-z

Suzuki, Y., Tsubaki, T., Nakaya, K., Kondo, G., Takeuchi, Y., Aita, Y., Murayama, Y., Shikama, A., Masuda, Y., Suzuki, H., Kawakami, Y., Shimano, H., Arai, T., Hada, Y., & Yahagi, N. (2023). New balance capability index as a screening tool for mild cognitive impairment. BMC Geriatrics, 23, 74. https://doi.org/10.1186/s12877-023-03777-6

Thyreau, B., Sato, K., Fukuda, H., & Taki, Y. (2018). Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing. Medical Image Analysis, 43, 214–228. https://doi.org/10.1016/j.media.2017.11.004

Wei, Y. C., Chen, C. K., Lin, C., Chen, P.Y., Hsu, P.C., Lin, C.P., Shyu, Y. C. & Huang, W. Y. (2022). Normative data of mini-mental state examination, Montreal cognitive assessment, and Alzheimer’s disease assessment scale-cognitive subscale of community-dwelling older adults in Taiwan. Dementia and Geriatric Cognitive Disorders, 51(4), 365–376. https://doi.org/10.1159/000525615

Whitwell, J. L. (2009). Voxel-Based Morphometry: an automated technique for assessing structural changes in the brain. The Journal of Neuroscience, 29(31), 9661–9664. https://doi.org/10.1523/jneurosci.2160-09.2009

Wright, I. C., McGuire, P., Poline, J., Travère, J., Murray, R. M., Frith, C. D., Frackowiak, R. S. J., & Friston, K. J. (1995). A Voxel-Based method for the statistical analysis of gray and white matter density applied to schizophrenia. NeuroImage, 2(4), 244–252. https://doi.org/10.1006/nimg.1995.1032

Zavaliangos-Petropulu, A., Tubi, M. A., Haddad, E., Zhu, A. H., Braskie, M. N., Jahanshad, N., Thompson, P. M., & Liew, S. L. (2020). Testing a convolutional neural network-based hippocampal segmentation method in a stroke population. Human Brain Mapping, 43(1), 234–243. https://doi.org/10.1002/hbm.25210

Downloads

Published

2023-12-23

How to Cite

Ibrahim, N. S. N., Suppiah, S., Ibrahim, B., Mohad Azmi, N. H., Seriramulu, V. P., Mohamad, M., Hanafi, M., Mohammad Sallehuddin, H., Razali, R. M. and Harrun, N. H. (2023) “Comparison of deep learning convolutional neural networks method with conventional volume-based morphometry measurement of hippocampal volume in Alzheimer’s disease”, Neuroscience Research Notes, 6(4), pp. 248.1–248.10. doi: 10.31117/neuroscirn.v6i4.248.