Intravenous human dental pulp-derived mesenchymal stem cell therapy for ischemic stroke in rats: an analysis of functional and ischemic brain areas outcomes
DOI:
https://doi.org/10.31117/neuroscirn.v6i4.237Keywords:
Ischemic stroke, Cell therapy, Mesenchymal stem cells, Temporary middle cerebral artery occlusion, RehabilitationAbstract
Cellular therapies have been implicated in treating and rehabilitating ischemic stroke (IS), involving the basic experimental and preclinical areas. Using mesenchymal stem cells (MSC) derived from human dental pulp has shown promising results in animal models, but still with mechanisms and consequences that are not entirely clear. The study aims to evaluate the effects of intravenous MSC on rats with IS regarding neurological function and histological areas of ischemia. Thirty-two male Wistar rats underwent temporary occlusion of the middle cerebral artery (TOMCA) for 60 minutes and were divided into two groups of 16 animals each. One group received dental pulp MSC intravenously, and another received saline 2 hours after TOMCA. The animals were then evaluated using the neurological functionality scales for 15 days, and at the end of the experiment period, the histological areas of cerebral ischemia were analysed. All animals presented ischemic areas and neurological deficits compatible with IS. There was partial recovery of the functionality scores over the evaluation period, and all animals presented focal cerebral ischemia measured by histological analysis; however, there was no statistical difference between the groups. The TOMCA model was effective in reproducing IS. Although we found no difference between treatment groups, our results were useful in showing the pattern of neurological recovery presented by animals treated with dental pulp MSC and the need to extend the evaluation time for a longer period and use more sensitive functional tests. The results add valuable data for improving research with dental pulp MSC in the murine model of IS.
References
Arrick, D. M., Sun, H., & Mayhan, W. G. (2012). Influence of exercise training on ischemic brain injury in type 1 diabetic rats. Journal of Applied Physiology, 113(7), 1121–1127. https://doi.org/10.1152/japplphysiol.00437.2012
Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., & Bartkowski, H. M. (1986). Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17(6), 1304–1308. https://doi.org/10.1161/01.str.17.6.1304
Benedek, A., Móricz, K., Jurányi, Z., Gigler, G., Lévay, G., Hársing, L. G., Mátyus, P., Szénási, G., & Albert, M. (2006). Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Research, 1116(1), 159–165. https://doi.org/10.1016/j.brainres.2006.07.123
Bernardi, L., Luisi, S. B., Fernandes, R. A., Dalberto, T. P., Valentim, L. M., Chies, J. a. B., Fossati, A. C. M., & Pranke, P. (2011). The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. Journal of Endodontics, 37(7), 973–979. https://doi.org/10.1016/j.joen.2011.04.010
Calloni, R. L., Winkler, B. C., Ricci, G., Poletto, M. G., Homero, W. M., Serafini, E. P., & Corleta, O. C. (2010). Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. Acta Cirurgica Brasileira, 25(5), 428–433. https://doi.org/10.1590/s0102-86502010000500008
Chen, J., Li, Y., Wang, L., Lu, M., Zhang, X., & Chopp, M. (2001). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences, 189(1–2), 49–57. https://doi.org/10.1016/s0022-510x(01)00557-3
Chopp, M., & Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurology, 1(2), 92–100. https://doi.org/10.1016/s1474-4422(02)00040-6
Dominici, M., Blanc, K. L., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
El Amki, M., Baumgartner, P., Bracko, O., Luft, A. R., & Wegener, S. (2017). Task-specific motor rehabilitation therapy after stroke improves performance in a different motor task: translational evidence. Translational Stroke Research, 8, 347–350. https://doi.org/10.1007/s12975-016-0519-x
GBD 2016 Neurology Collaborators. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X
Goldlust, E. J., Paczynski, R. P., He, Y. Y., Hsu, C. Y., & Goldberg, M. P. (1996). Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke, 27(9), 1657–1662. https://doi.org/10.1161/01.str.27.9.1657
Horita, Y., Honmou, O., Harada, K., Houkin, K., Hamada, H., & Kocsis, J. D. (2006). Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. Journal of Neuroscience Research, 84(7), 1495–1504. https://doi.org/10.1002/jnr.21056
Hossmann, K. A. (1998). Experimental models for the investigation of brain ischemia. Cardiovascular Research, 39(1), 106–120. https://doi.org/10.1016/s0008-6363(98)00075-3
Inoue, T., Sugiyama, M., Hattori, H., Wakita, H., Wakabayashi, T., & Ueda, M. (2013). Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Engineering Part A, 19(1–2), 24–29. https://doi.org/10.1089/ten.TEA.2011.0385
Joshi, C. N., Jain, S. K., & Murthy, P. S. R. (2004). An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Research Protocols, 13(1), 11–17. https://doi.org/10.1016/j.brainresprot.2003.12.001
Katzan, I., Furlan, A. J., Lloyd, L. E., Frank, J. I., Harper, D. L., Hinchey, J. A., Hammel, J., Qu, A., & Sila, C. A. (2000). Use of tissue-type plasminogen activator for acute ischemic stroke: The Cleveland area experience. JAMA, 283(9), 1151–1158. https://doi.org/10.1001/jama.283.9.1151
Kaya, A. H., Erdogan, H., & Tasdemiroglu, E. (2017). Searching evidences of stroke in animal models: a review of discrepancies. Turkish Neurosurgery, 27(2), 167–173. https://doi.org/10.5137/1019-5149.JTN.15373-15.2
Kocsis, J. D., & Honmou, O. (2012). Bone marrow stem cells in experimental stroke. Progress in Brain Research, 201, 79–98. https://doi.org/10.1016/B978-0-444-59544-7.00005-6
Kusaka, I., Kusaka, G., Zhou, C., Ishikawa, M., Nanda, A., Granger, D. N., Zhang, J. H., & Tang, J. (2004). Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology Heart and Circulatory Physiology, 286(6), H2442-2451. https://doi.org/10.1152/ajpheart.01169.2003
Leong, W. K., Henshall, T. L., Arthur, A., Kremer, K. L., Lewis, M., Helps, S. C., Field, J., Hamilton‐Bruce, M. A., Warming, S., Manavis, J., Vink, R., Gronthos, S., & Koblar, S. (2012). Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Translational Medicine, 1(3), 177–187. https://doi.org/10.5966/sctm.2011-0039
Li, S., Luo, L., He, Y., Li, R., Xiang, Y., Xing, Z., Li, Y., Albashari, A. A., Liao, X., Zhang, K., Gao, L., & Ye, Q. (2021). Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response. Cell Proliferation, 54(8), e13093. https://doi.org/10.1111/cpr.13093
Ma, R., Xie, Q., Li, Y., Chen, Z., Ren, M., Chen, H., Li, H., Li, J., & Wang, J. (2020). Animal models of cerebral ischemia: A review. Biomedicine & Pharmacotherapy, 131, 110686. https://doi.org/10.1016/j.biopha.2020.110686
Macleod, M. R., O'Collins, T., Howells, D. W., & Donnan, G. A. (2004). Pooling of animal experimental data reveals influence of study design and publication bias. Stroke, 35(5), 1203–1208. https://doi.org/10.1161/01.STR.0000125719.25853.20
Mendez-Otero, R., Giraldi-Guimarães, A., Pimentel‐Coelho, P. M., & De Freitas, G. R. (2009). Terapia celular no acidente vascular cerebral. Revista Brasileira de Hematologia e Hemoterapia, 31, 99–103. https://doi.org/10.1590/S1516-84842009005000030
Nakiri, G. S., De Castro-Afonso, L. H., Monsignore, L. M., Dias, F., Aléssio-Alves, F. F., Fábio, S. R. C., Camilo, M. R., Cougo-Pinto, P. T., Leite, J. P., Pontes-Neto, O. M., & Abud, D. G. (2017). Experience on mechanical thrombectomy for acute stroke treatment in a Brazilian university hospital. Journal of Stroke and Cerebrovascular Diseases, 26(3), 532–537. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.128
Nito, C., Suda, S., Nitahara-Kasahara, Y., Okada, T., & Kimura, K. (2022). Dental-pulp stem cells as a therapeutic strategy for ischemic stroke. Biomedicines, 10(4), 737. https://doi.org/10.3390/biomedicines10040737
Park, C. K., Mendelow, A. D., Graham, D. I., McCulloch, J., & Teasdale, G. M. (1988). Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischaemia. Neuropathology and Applied Neurobiology, 14(4), 289–298. https://doi.org/10.1111/j.1365-2990.1988.tb00889.x
Ruan, J., & Yao, Y. (2020). Behavioral tests in rodent models of stroke. Brain Hemorrhages, 1(4), 171–184. https://doi.org/10.1016/j.hest.2020.09.001
Sasaki, Y., Sasaki, M., Kataoka‐Sasaki, Y., Nakazaki, M., Nagahama, H., Suzuki, J., Tateyama, D., Oka, S., Namioka, T., Namioka, A., Onodera, R., Mikami, T., Wanibuchi, M., Kakizawa, M., Ishiai, S., Kocsis, J. D., & Honmou, O. (2016). Synergic effects of rehabilitation and intravenous infusion of mesenchymal stem cells after stroke in rats. Physical Therapy, 96(11), 1791–1798. https://doi.org/10.2522/ptj.20150504
Shi, X., Mao, J., & Liu, Y. (2020). Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Translational Medicine, 9(4), 445–464. https://doi.org/10.1002/sctm.19-0398
Song, M., Lee, J.-H., Bae, J., Bu, Y., & Kim, E.-C. (2017). Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplantation, 26(6), 1001–1016. https://doi.org/10.3727/096368916X694391
Sosa, P. M., Schimidt, H. L., Altermann, C. D. C., Vieira, A. S., Cibin, F. W. S., Carpes, F. P., Mello-Carpes, P. B. (2015). Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion. Brazilian Journal of Medical and Biological Research, 48(9), 798–804. https://doi.org/10.1590/1414-431x20154429
Sugiyama, M., Iohara, K., Wakita, H., Hattori, H., Ueda, M., Matsushita, K., & Nakashima, M. (2011). Dental pulp-derived CD31−/CD146− side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Engineering Part A, 17(9–10), 1303–1311. https://doi.org/10.1089/ten.TEA.2010.0306
Taniguchi, H., & Andreasson, K. (2008). The hypoxic ischemic encephalopathy model of perinatal ischemia. Journal of Visualized Experiments, (21), e955. https://doi.org/10.3791/955
Vu, Q., Xie, K., Eckert, M., Zhao, W., & Cramer, S. C. (2014). Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology, 82(14), 1277–1286. https://doi.org/10.1212/WNL.0000000000000278
Wang, H., Sun, M., Sun, J., Gong, P., Liu, N., & Wang, M. (2022). Dental Pulp Stem Cell Therapy in Ischemic Stroke: A Meta-Analysis of Preclinical Studies. Journal of Stroke and Cerebrovascular Diseases, 31(6), 106453. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106453
Wang-Fischer, Y. (2009). Manual of stroke models in rats (1st Edition). CRC Press. https://doi.org/10.1201/9781420009521
Wu, T., Xu, W., Chen, H., Li, S., Dou, R., Shen, H., Liu, X., Liu, X., Hong, Y., & He, J. (2020). Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochimica Et Biophysica Sinica, 52(9), 1016–1029. https://doi.org/10.1093/abbs/gmaa082
Xu, Y., Du, S., Yu, X., Han, X., Hou, J., & Guo, H. (2014). Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regeneration Research, 9(23), 2053–2058. https://doi.org/10.4103/1673-5374.147930
Yalvaç, M. E., Rizvanov, A. A., Kılıç, E., Şahi̇N, F., Mukhamedyarov, M. A., Islamov, R. R., & Palotás, A. (2009). Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Current Pharmaceutical Design, 15(33), 3908–3916. https://doi.org/10.2174/138161209789649439
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Gabriel Frizon Greggianin, Marco Antônio Stefani, Taís Malysz, Laura Elena Sperling

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.