Intravenous human dental pulp-derived mesenchymal stem cell therapy for ischemic stroke in rats: an analysis of functional and ischemic brain areas outcomes

Authors

  • Gabriel Frizon Greggianin Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
  • Marco Antônio Stefani Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
  • Taís Malysz 1) Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil. 2) Department of Neuroscience, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
  • Laura Elena Sperling Institute of Stem Cell Research, Federal University of Rio Grande do Sul, Brazil.

DOI:

https://doi.org/10.31117/neuroscirn.v6i4.237

Keywords:

Ischemic stroke, Cell therapy, Mesenchymal stem cells, Temporary middle cerebral artery occlusion, Rehabilitation

Abstract

Cellular therapies have been implicated in treating and rehabilitating ischemic stroke (IS), involving the basic experimental and preclinical areas. Using mesenchymal stem cells (MSC) derived from human dental pulp has shown promising results in animal models, but still with mechanisms and consequences that are not entirely clear. The study aims to evaluate the effects of intravenous MSC on rats with IS regarding neurological function and histological areas of ischemia. Thirty-two male Wistar rats underwent temporary occlusion of the middle cerebral artery (TOMCA) for 60 minutes and were divided into two groups of 16 animals each. One group received dental pulp MSC intravenously, and another received saline 2 hours after TOMCA. The animals were then evaluated using the neurological functionality scales for 15 days, and at the end of the experiment period, the histological areas of cerebral ischemia were analysed. All animals presented ischemic areas and neurological deficits compatible with IS. There was partial recovery of the functionality scores over the evaluation period, and all animals presented focal cerebral ischemia measured by histological analysis; however, there was no statistical difference between the groups. The TOMCA model was effective in reproducing IS. Although we found no difference between treatment groups, our results were useful in showing the pattern of neurological recovery presented by animals treated with dental pulp MSC and the need to extend the evaluation time for a longer period and use more sensitive functional tests. The results add valuable data for improving research with dental pulp MSC in the murine model of IS.

References

Arrick, D. M., Sun, H., & Mayhan, W. G. (2012). Influence of exercise training on ischemic brain injury in type 1 diabetic rats. Journal of Applied Physiology, 113(7), 1121–1127. https://doi.org/10.1152/japplphysiol.00437.2012

Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., & Bartkowski, H. M. (1986). Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17(6), 1304–1308. https://doi.org/10.1161/01.str.17.6.1304

Benedek, A., Móricz, K., Jurányi, Z., Gigler, G., Lévay, G., Hársing, L. G., Mátyus, P., Szénási, G., & Albert, M. (2006). Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Research, 1116(1), 159–165. https://doi.org/10.1016/j.brainres.2006.07.123

Bernardi, L., Luisi, S. B., Fernandes, R. A., Dalberto, T. P., Valentim, L. M., Chies, J. a. B., Fossati, A. C. M., & Pranke, P. (2011). The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. Journal of Endodontics, 37(7), 973–979. https://doi.org/10.1016/j.joen.2011.04.010

Calloni, R. L., Winkler, B. C., Ricci, G., Poletto, M. G., Homero, W. M., Serafini, E. P., & Corleta, O. C. (2010). Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. Acta Cirurgica Brasileira, 25(5), 428–433. https://doi.org/10.1590/s0102-86502010000500008

Chen, J., Li, Y., Wang, L., Lu, M., Zhang, X., & Chopp, M. (2001). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences, 189(1–2), 49–57. https://doi.org/10.1016/s0022-510x(01)00557-3

Chopp, M., & Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurology, 1(2), 92–100. https://doi.org/10.1016/s1474-4422(02)00040-6

Dominici, M., Blanc, K. L., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905

El Amki, M., Baumgartner, P., Bracko, O., Luft, A. R., & Wegener, S. (2017). Task-specific motor rehabilitation therapy after stroke improves performance in a different motor task: translational evidence. Translational Stroke Research, 8, 347–350. https://doi.org/10.1007/s12975-016-0519-x

GBD 2016 Neurology Collaborators. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X

Goldlust, E. J., Paczynski, R. P., He, Y. Y., Hsu, C. Y., & Goldberg, M. P. (1996). Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke, 27(9), 1657–1662. https://doi.org/10.1161/01.str.27.9.1657

Horita, Y., Honmou, O., Harada, K., Houkin, K., Hamada, H., & Kocsis, J. D. (2006). Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. Journal of Neuroscience Research, 84(7), 1495–1504. https://doi.org/10.1002/jnr.21056

Hossmann, K. A. (1998). Experimental models for the investigation of brain ischemia. Cardiovascular Research, 39(1), 106–120. https://doi.org/10.1016/s0008-6363(98)00075-3

Inoue, T., Sugiyama, M., Hattori, H., Wakita, H., Wakabayashi, T., & Ueda, M. (2013). Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Engineering Part A, 19(1–2), 24–29. https://doi.org/10.1089/ten.TEA.2011.0385

Joshi, C. N., Jain, S. K., & Murthy, P. S. R. (2004). An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Research Protocols, 13(1), 11–17. https://doi.org/10.1016/j.brainresprot.2003.12.001

Katzan, I., Furlan, A. J., Lloyd, L. E., Frank, J. I., Harper, D. L., Hinchey, J. A., Hammel, J., Qu, A., & Sila, C. A. (2000). Use of tissue-type plasminogen activator for acute ischemic stroke: The Cleveland area experience. JAMA, 283(9), 1151–1158. https://doi.org/10.1001/jama.283.9.1151

Kaya, A. H., Erdogan, H., & Tasdemiroglu, E. (2017). Searching evidences of stroke in animal models: a review of discrepancies. Turkish Neurosurgery, 27(2), 167–173. https://doi.org/10.5137/1019-5149.JTN.15373-15.2

Kocsis, J. D., & Honmou, O. (2012). Bone marrow stem cells in experimental stroke. Progress in Brain Research, 201, 79–98. https://doi.org/10.1016/B978-0-444-59544-7.00005-6

Kusaka, I., Kusaka, G., Zhou, C., Ishikawa, M., Nanda, A., Granger, D. N., Zhang, J. H., & Tang, J. (2004). Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology Heart and Circulatory Physiology, 286(6), H2442-2451. https://doi.org/10.1152/ajpheart.01169.2003

Leong, W. K., Henshall, T. L., Arthur, A., Kremer, K. L., Lewis, M., Helps, S. C., Field, J., Hamilton‐Bruce, M. A., Warming, S., Manavis, J., Vink, R., Gronthos, S., & Koblar, S. (2012). Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Translational Medicine, 1(3), 177–187. https://doi.org/10.5966/sctm.2011-0039

Li, S., Luo, L., He, Y., Li, R., Xiang, Y., Xing, Z., Li, Y., Albashari, A. A., Liao, X., Zhang, K., Gao, L., & Ye, Q. (2021). Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response. Cell Proliferation, 54(8), e13093. https://doi.org/10.1111/cpr.13093

Ma, R., Xie, Q., Li, Y., Chen, Z., Ren, M., Chen, H., Li, H., Li, J., & Wang, J. (2020). Animal models of cerebral ischemia: A review. Biomedicine & Pharmacotherapy, 131, 110686. https://doi.org/10.1016/j.biopha.2020.110686

Macleod, M. R., O'Collins, T., Howells, D. W., & Donnan, G. A. (2004). Pooling of animal experimental data reveals influence of study design and publication bias. Stroke, 35(5), 1203–1208. https://doi.org/10.1161/01.STR.0000125719.25853.20

Mendez-Otero, R., Giraldi-Guimarães, A., Pimentel‐Coelho, P. M., & De Freitas, G. R. (2009). Terapia celular no acidente vascular cerebral. Revista Brasileira de Hematologia e Hemoterapia, 31, 99–103. https://doi.org/10.1590/S1516-84842009005000030

Nakiri, G. S., De Castro-Afonso, L. H., Monsignore, L. M., Dias, F., Aléssio-Alves, F. F., Fábio, S. R. C., Camilo, M. R., Cougo-Pinto, P. T., Leite, J. P., Pontes-Neto, O. M., & Abud, D. G. (2017). Experience on mechanical thrombectomy for acute stroke treatment in a Brazilian university hospital. Journal of Stroke and Cerebrovascular Diseases, 26(3), 532–537. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.128

Nito, C., Suda, S., Nitahara-Kasahara, Y., Okada, T., & Kimura, K. (2022). Dental-pulp stem cells as a therapeutic strategy for ischemic stroke. Biomedicines, 10(4), 737. https://doi.org/10.3390/biomedicines10040737

Park, C. K., Mendelow, A. D., Graham, D. I., McCulloch, J., & Teasdale, G. M. (1988). Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischaemia. Neuropathology and Applied Neurobiology, 14(4), 289–298. https://doi.org/10.1111/j.1365-2990.1988.tb00889.x

Ruan, J., & Yao, Y. (2020). Behavioral tests in rodent models of stroke. Brain Hemorrhages, 1(4), 171–184. https://doi.org/10.1016/j.hest.2020.09.001

Sasaki, Y., Sasaki, M., Kataoka‐Sasaki, Y., Nakazaki, M., Nagahama, H., Suzuki, J., Tateyama, D., Oka, S., Namioka, T., Namioka, A., Onodera, R., Mikami, T., Wanibuchi, M., Kakizawa, M., Ishiai, S., Kocsis, J. D., & Honmou, O. (2016). Synergic effects of rehabilitation and intravenous infusion of mesenchymal stem cells after stroke in rats. Physical Therapy, 96(11), 1791–1798. https://doi.org/10.2522/ptj.20150504

Shi, X., Mao, J., & Liu, Y. (2020). Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Translational Medicine, 9(4), 445–464. https://doi.org/10.1002/sctm.19-0398

Song, M., Lee, J.-H., Bae, J., Bu, Y., & Kim, E.-C. (2017). Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplantation, 26(6), 1001–1016. https://doi.org/10.3727/096368916X694391

Sosa, P. M., Schimidt, H. L., Altermann, C. D. C., Vieira, A. S., Cibin, F. W. S., Carpes, F. P., Mello-Carpes, P. B. (2015). Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion. Brazilian Journal of Medical and Biological Research, 48(9), 798–804. https://doi.org/10.1590/1414-431x20154429

Sugiyama, M., Iohara, K., Wakita, H., Hattori, H., Ueda, M., Matsushita, K., & Nakashima, M. (2011). Dental pulp-derived CD31−/CD146− side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Engineering Part A, 17(9–10), 1303–1311. https://doi.org/10.1089/ten.TEA.2010.0306

Taniguchi, H., & Andreasson, K. (2008). The hypoxic ischemic encephalopathy model of perinatal ischemia. Journal of Visualized Experiments, (21), e955. https://doi.org/10.3791/955

Vu, Q., Xie, K., Eckert, M., Zhao, W., & Cramer, S. C. (2014). Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology, 82(14), 1277–1286. https://doi.org/10.1212/WNL.0000000000000278

Wang, H., Sun, M., Sun, J., Gong, P., Liu, N., & Wang, M. (2022). Dental Pulp Stem Cell Therapy in Ischemic Stroke: A Meta-Analysis of Preclinical Studies. Journal of Stroke and Cerebrovascular Diseases, 31(6), 106453. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106453

Wang-Fischer, Y. (2009). Manual of stroke models in rats (1st Edition). CRC Press. https://doi.org/10.1201/9781420009521

Wu, T., Xu, W., Chen, H., Li, S., Dou, R., Shen, H., Liu, X., Liu, X., Hong, Y., & He, J. (2020). Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochimica Et Biophysica Sinica, 52(9), 1016–1029. https://doi.org/10.1093/abbs/gmaa082

Xu, Y., Du, S., Yu, X., Han, X., Hou, J., & Guo, H. (2014). Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regeneration Research, 9(23), 2053–2058. https://doi.org/10.4103/1673-5374.147930

Yalvaç, M. E., Rizvanov, A. A., Kılıç, E., Şahi̇N, F., Mukhamedyarov, M. A., Islamov, R. R., & Palotás, A. (2009). Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Current Pharmaceutical Design, 15(33), 3908–3916. https://doi.org/10.2174/138161209789649439

Downloads

Published

2023-10-11

How to Cite

Greggianin, G. F., Stefani, M. A., Malysz, T. and Sperling, L. E. (2023) “Intravenous human dental pulp-derived mesenchymal stem cell therapy for ischemic stroke in rats: an analysis of functional and ischemic brain areas outcomes”, Neuroscience Research Notes, 6(4), pp. 237.1–237.11. doi: 10.31117/neuroscirn.v6i4.237.