Role of nanotechnology in therapeutics and diagnosis of Alzheimer’s disease


  • Dhivya P Sundaram Department of Biomedical Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
  • Swathy Govindaswamy KMCH College of Pharmacy, Department of Pharmacy Practice, Coimbatore, Tamil Nadu 641048, India
  • Sobiya Mathiazhagan Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli, Tamil Nadu 620024, India
  • Jayalakshmi Venugopal KMCH College of Pharmacy, Department of Pharmacy Practice, Coimbatore, Tamil Nadu 641048, India



Alzheimer's disease, Nanomedicine, Nanotechnology, Diagnostics, Nanoparticles


Alzheimer's disease refers to a pathological topography accompanied by the loss of neurons in the brain regions including entorhinal cortex and hippocampus, resulting in memory impairment, cognitive dysfunction, behavioural problems, and difficulties in activities of daily living that ultimately lead to mortality. This disease typically affects the elderly population. Even if the underlying pathophysiological mechanisms are unclear, Alzheimer's disease is unquestionably associated with dysfunction in the cholinergic system, resulting in a decreased level of acetylcholine in specific brain regions, including the entorhinal cortex and hippocampus. Although significant progress has been made in understanding the molecular and cellular causes of Alzheimer's disease, there is presently no medication available to reduce or stop the loss of brain cells. As the number of individuals with Alzheimer's disease continues to rise, there is a pressing need to develop ways for early diagnosis and offer viable treatments to avert a public health crisis. In recent years, nanoparticles have been seriously studied as a diagnostic and therapeutic tool for Alzheimer's disease. Here, we discuss the recent growth in nanoparticles for Alzheimer's disease diagnosis and treatment.


Anton, N., Benoit, J.P. & Saulnier, P. (2008) Design and production of nanoparticles formulated from nano-emulsion templates-a review. Journal of Controlled Release. 128, 185–199.

Aboofazeli, R. (2010). Nanometric-scaled emulsions (nanoemulsions). Iranian Journal of Pharmaceutical Research, 9(4), Suppl. 4, 325–326.

Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science, 14(1), 3–15.

Aisen, P. S., & Davis, K. L. (1997). The search for disease-modifying treatment for Alzheimer’s Disease. Neurology, 48, 35–41.

Akhtar, S., & Benter, I. F. (2007). Nonviral delivery of synthetic siRNAs in vivo. Journal of Clinical Investigation, 117(12), 3623–3632.

Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818–1822.

Amiri, H., Saeidi, K., Borhani, P., Manafirad, A., Ghavami, M., & Zerbi, V. (2013). Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chemical Neuroscience, 4(11), 1417–1429.

Ashrafi, H., Azadi, A., Mohammadi-Samani, S., & Hamidi, M. (2020). New candidate delivery system for Alzheimer’s disease: Deferoxamine nanogels. Biointerface Research in Applied Chemistry, 10(6), 7106–7119.

Ayaz, M., Ovais, M., Ahmad, I., Sadiq, A., Khalil, A. T., & Ullah, F. (2019). Biosynthesized metal nanoparticles as potential Alzheimer's disease therapeutics. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications (pp. 31-42). Elsevier Inc.

Badry, A.E. & Mattar, M.A. (2017). Nanotechnology in Neurosurgical Practice. EC Neurology, 5(4), 149–171.

Bajaj, L., & Chopra, D. (2013). Preparation and Evaluation of rivastigmine Nanoparticles for Treatment of Dementia Associated with Alzheimer's disease. Retrieved 28 November 2023, from,0

Batrakova, E. V., Li, S., Alakhov, V. Y., Miller, D. W., & Kabanov, A. V. (2003). Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. Journal of Pharmacology and Experimental Therapeutics, 304(2), 845–854.

Bhavna, Md, S., Ali, M., Baboota, S., Sahni, J. K., Bhatnagar, A., & Ali, J. (2014). Preparation, characterisation, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Development and Industrial Pharmacy, 40(2), 278–287.

Brambilla, D., Verpillot, R., Le Droumaguet, B., Nicolas, J., Taverna, M., Kóňa, J., Lettiero, B., Hashemi, S. H., De Kimpe, L., Canovi, M., Gobbi, M., Nicolas, V., Scheper, W., Moghimi, S. M., Tvaroška, I., Couvreur, P., & Andrieux, K. (2012). Pegylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimer's disease. ACS Nano, 6(7), 5897–5908.

Busquets, M. A., Sabaté, R., & Estelrich, J. (2014). Potential applications of magnetic particles to detect and treat Alzheimer's disease. Nanoscale Research Letters, 9(1), 1–10.

Cai, W., & Chen, X. (2007). Nanoplatforms for targeted molecular imaging in living subjects. Small, 3(11), 1840–1854.

Cao, Y., & Zhang, R. (2022). The application of nanotechnology in treatment of Alzheimer's disease. Frontiers in Bioengineering and Biotechnology, 10, 1042986.

Dobrovolskaia, M. A., & McNeil, S. E. (2007). Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2(8), 469–478.

Dumurgier, J., & Tzourio, C. (2020). Epidemiology of neurological diseases in older adults. Revue Neurologique, 176(9), 642–648. https://doi:10.1016/j.neurol.2020.01.356

Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., ... & Fischer, F. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480.

Fradinger, E. A., & Bitan, G. (2005). En route to early diagnosis of Alzheimer's disease – Are we there yet? Trends in Biotechnology, 23(11), Suppl. 11, 531–533.

Gok, M., Madrer, N., Zorbaz, T., Bennett, E. R., Greenberg, D., Bennett, D. A., & Soreq, H. (2022). Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease. Frontiers in Molecular Neuroscience, 15, 941467.

Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey, C. M., & Nolla, J. (2008). Nanoemulsions: New applications and optimisation of their preparations. Current Opinion in Colloid and Interface Science, 13(4), 245–251.

Harper, J. D., Wong, S. S., Lieber, C. M., & Lansbury, P. T. (1999). Assembly of Aβ amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease. Biochemistry, 38(28), Suppl. 28, 8972–8980.

Hong-Qi, Y., Zhi-Kun, S., & Sheng-Di, C. (2012). Current advances in the treatment of Alzheimer's disease: Focused on considerations targeting Aβ and tau. Translational Neurodegeneration, 1(1), Suppl. 21, 21.

Hostettmann, K., Borloz, A. U., Urbain, A., & Marston, A. (2006). Natural product inhibitors of acetylcholinesterase. Current Organic Chemistry, 10(8), 825–847.

Hunter, A. C., & Moghimi, S. M. (2003). Synthetic polymers in 21st century therapeutics: The way forward. Drug Discovery Today, 8(4), 154–156.

Huwyler, J., Wu, D., & Pardridge, W. M. (1996). Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 14164–14169.

Kabanov, A.V., Batrakova, E.V. & Alakhov, V.Y. (2003). An essential relationship between ATP depletion and chemosensitizing activity of pluronic block copolymers. Journal of Controlled Release, 91(1–2), 75–83.

Kamei, N., Okada, N., Ikeda, T., Choi, H., Fujiwara, Y., Okumura, H., & Takeda-Morishita, M. (2018). Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Scientific Reports, 8(1), 17641.

Keating, C. D. (2005). Nanoscience enables ultrasensitive detection of Alzheimer's biomarker. Proceedings of the National Academy of Sciences of the United States of America, 102(7), Suppl. 7, 2263–2264.

King, M., Su, W., Chang, A., Zuckerman, A., & Pasternak, G. W. (2001). Transport of opioids from the brain to the periphery by P-glycoprotein: Peripheral actions of central drugs. Nature Neuroscience, 4(3), 268–274.

Klajnert, B., Cortijo-Arellano, M., Cladera, J., & Bryszewska, M. (2006). Influence of dendrimer's structure on its activity against amyloid fibril formation. Biochemical and Biophysical Research Communications, 345(1), Suppl. 1, 21–28.

Kreuter, J. (2001). Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews, 47(1), 65–81.

Kwon, G. S. (1998). Diblock copolymer nanoparticles for drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 15(5), 481–512.

Liu, X. G., Zhang, L., Lu, S., Liu, D. Q., Huang, Y. R., Zhu, J., Zhou, W. W., Yu, X. L., & Liu, R. T. (2020). Superparamagnetic iron oxide nanoparticles conjugated with Aβ oligomer-specific scFv antibody and class A scavenger receptor activator show therapeutic potentials for Alzheimer's Disease. Journal of Nanobiotechnology, 18(1), 160.

Lockman, P. R., Koziara, J., Roder, K. E., Paulson, J., Abbruscato, T. J., Mumper, R. J., & Allen, D. D. (2003). In vivo and in vitro assessment of baseline blood–brain barrier parameters in the presence of novel nanoparticles. Pharmaceutical Research, 20(5), 705-713.

Mahmoudi, M., Quinlan-Pluck, F., Monopoli, M. P., Sheibani, S., Vali, H., Dawson, K. A., & Lynch, I. (2013). Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid beta protein fibrillation in solution. ACS Chemical Neuroscience, 4(3), 475–485.

Mansoori, G. A. (2005). Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems. World Scientific Publishing, Co.

Mansoori, G. A., George, Th. F., Assoufid, L., & Zhang, G. (2007). Molecular building blocks for nanotechnology. Springer New York.

Mason, T. G., Graves, S. M., Wilking, J. N., & Lin, M. Y. (2006). Extreme emulsification: Formation and structure of nanoemulsions. Condensed Matter Physics, 9(1), Suppl. 1, 193–199.

Masters, C. L., Cappai, R., Barnham, K. J., & Villemagne, V. L. (2006). Molecular mechanisms for Alzheimer's disease: Implications for neuroimaging and therapeutics. Journal of Neurochemistry, 97(6), Suppl. 6, 1700–1725.

Mattson, M. P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631–639.

Milane, L., & Amiji, M. (2021). Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Delivery and Translational Research, 11, 1309–1315.

Mir Najib Ullah, S.N., Afzal, O., Altamimi, A.S.A., Ather, H., Sultana, S., Almalki, W.H., Bharti, P., Sahoo, A., Dwivedi, K., Khan, G., Sultana, S., Alzahrani, A., & Rahman, M. (2023). Nanomedicine in the Management of Alzheimer's Disease: State-of-the-Art. Biomedicines, 11(6), 1752.

Moghimi, S. M. (2011). Bionanotechnologies for treatment and diagnosis of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 7(5), 515–518.

Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. The FASEB Journal, 19(3), 311–330.

Mortimer, J. A., Borenstein, A. R., Gosche, K. M., & Snowdon, D. A. (2005). Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. Journal of Geriatric Psychiatry and Neurology, 18(4), Suppl. 4, 218–223.

Muller, H., Becker, R., Kruss, B., & Peters, K. (1999). Pharmaceutical nanosuspensions for medicament administration as system of increased saturation solubility and rate of solution. (US5858410A) U.S. Patent.

Nazem, A., & Mansoori, G. A. (2008). Nanotechnology solutions for Alzheimer's disease: Advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer's Disease, 13(2), 199–223.

Nazem, A., & Mansoori, G. A. (2011). Nanotechnology for Alzheimer's disease detection and treatment. Insciences Journal, 1(4), Suppl. 4, 169–193.

Nikakhtar, A., Nasehzadeh, A. & Mansoori, G.A. (2007). Formation and Stability Conditions of DNA-Dendrimer Nano-Clusters. Journal of Computational and Theoretical Nanoscience, 4, 521–528.

Pagar, K., & Vavia, P. (2013). Rivastigmine-loaded L-Lactide-Depsipeptide polymeric nanoparticles: Decisive formulation variable optimisation. Scientia Pharmaceutica, 81(3), 865–885.

Patel, D. A., Henry, J. E., & Good, T. A. (2007). Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimers: Role of sialic acid attachment. Brain Research, 1161, 95–105.

Patel, D., Henry, J., & Good, T. (2006). Attenuation of beta-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochimica et Biophysica Acta, 1760(12), Suppl. 12, 1802–1809.

Prakash, J., Prakash, Prasad, V.V., Claret, A., Somasundaram, Rajan, S. (2022). Rivastigmine Loaded PEG-PLGA Nanoparticles for Enhanced Delivery to the Brain: In-Vitro and In-Vivo Studies for Alzheimer’s disease. Research Square,

Quintana, C., Wu, T. D., Delatour, B., Dhenain, M., Guerquin-Kern, J. L., & Croisy, A. (2007). Morphological and chemical studies of pathological human and mice brain at the subcellular level: Correlation between light, electron, and NanoSIMS microscopies. Microscopy Research and Technique, 70(4), Suppl. 4, 281–295.

Roney, C., Kulkarni, P., Arora, V., Antich, P., Bonte, F., Wu, A., Mallikarjuana, N. N., Manohar, S., Liang, H. F., Kulkarni, A. R., Sung, H. W., Sairam, M., & Aminabhavi, T. M. (2005). Targeted nanoparticles for drug delivery through the blood brain-barrier for Alzheimer's disease. Journal of Controlled Release, 108(2–3), 193–214.

Selvin, P. R. (2000). The renaissance of fluorescence resonance energy transfer. Nature Structural Biology, 7(9), Suppl. 9, 730–734.

Sillerud, L. O., Solberg, N. O., Chamberlain, R., Orlando, R. A., Heidrich, J. E., Brown, D. C., Brady, C. I., Vander Jagt, T. A., Garwood, M., & Vander Jagt, D. L. (2013). SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AβPP/PS-1 transgenic mouse brain. Journal of Alzheimer's disease, 34(2), 349–365.

Silva, G. A. (2005). Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surgical Neurology, 63(4), Suppl. 4, 301–306.

Silva, G. A. (2010). Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Annals of the New York Academy of Sciences, 1199, 221–230.

Singh, R., & Lillard, J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nanoemulsions. Current Opinion in Colloid & Interface Science, 10(3-4), 102-110.

Song, Q., Huang, M., Yao, L., Wang, X., Gu, X., Chen, J., Chen, J., Huang, J., Hu, Q., Kang, T., Rong, Z., Qi, H., Zheng, G., Chen, H., & Gao, X. (2014). Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta. ACS Nano, 8(3), Suppl. 3, 2345–2359.

Sonneville-Aubrun, O., Simonnet, J. T., & L’Alloret, F. (2004). Nanoemulsions: A new vehicle for skincare products. Advances in Colloid and Interface Science, 108–109, 145–149.

Sood, S., Jain, K., & Gowthamarajan, K. (2013). Intranasal delivery of curcumin-donepezil nanoemulsion for brain targeting in Alzheimer's disease. Journal of the Neurological Sciences, 333, e316-e317.

Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A., & Chiappetta, D. A. (2010). New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews, 62(4–5), 547–559.

Viola, K. L., Sbarboro, J., Sureka, R., De, M., Bicca, M. A., Wang, J., Vasavada, S., Satpathy, S., Wu, S., Joshi, H., Velasco, P. T., MacRenaris, K., Waters, E. A., Lu, C., Phan, J., Lacor, P., Prasad, P., Dravid, V. P., & Klein, W. L. (2015). Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease. Nature Nanotechnology, 10(1), 91–98.

Wadghiri, Y. Z., Sigurdsson, E. M., Sadowski, M., Elliott, J. I., Li, Y., Scholtzova, H., Tang, C. Y., Aguinaldo, G., Pappolla, M., Duff, K., Wisniewski, T., & Turnbull, D. H. (2003). Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magnetic Resonance in Medicine, 50(2), 293–302.

Wilson, B., Samanta, M. K., Santhi, K., Kumar, K. P. S., Ramasamy, M., & Suresh, B. (2010). Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), Suppl. 1, 144–152.

Zhang, D., Tan, T., Gao, L., Zhao, W., & Wang, P. (2007). Preparation of azithromycin nanosuspensions by high pressure homogenisation and its physicochemical characteristics studies. Drug Development and Industrial Pharmacy, 33(5), Suppl. 5, 569–575.




How to Cite

P Sundaram, D., Govindaswamy, S., Mathiazhagan, S. and Venugopal, J. (2024) “Role of nanotechnology in therapeutics and diagnosis of Alzheimer’s disease”, Neuroscience Research Notes, 7(1), pp. 225.1–225.9. doi: 10.31117/neuroscirn.v7i1.225.