WAG/Rij rat model: a resource for the pharmacology of epileptogenesis and related neurological/psychiatric comorbidities

  • Antonio Leo Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Carmen De Caro Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Valentina Nesci Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Martina Tallarico CNR, Section of Pharmacology, Institute of Neurological Sciences, Borgia, Italy.
  • Giovanna Mangano Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Ernesto Palma Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Michelangelo Iannone CNR, Section of Pharmacology, Institute of Neurological Sciences, Borgia, Italy.
  • Giovambattista De Sarro Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Rita Citraro Science of Health Department, School of Medicine, University of Catanzaro, Italy.
  • Emilio Russo Science of Health Department, School of Medicine, University of Catanzaro, Italy.
Keywords: epileptogenesis, absence seizures, comorbidity, depression, cognitive decline

Abstract

The discovery of potential antiseizure drugs (ASDs) requires the use of experimental models that can also provide a unique chance for identifying new effective molecules able to prevent and/or cure epilepsy. Most of the preclinical knowledge on epileptogenesis derives from studies performed on post-insult models that are characterized by a recognizable first insult, a silent period lasting until the onset of the first seizure and a chronic period characterized by spontaneous recurrent seizures (SRSs). At odds, genetic models, in which the first insult remains to be identified, have been poorly investigated. Among the genetic models, the WAG/Rij rat was validated as a suitable experimental model of absence epileptogenesis with neuropsychiatric symptomatology, in which, according to our previous hypothesis on SRSs onset, genes could be considered the first ‘insult’ underlying all plastic modifications supporting the occurrences of absence seizures in this strain. In fact, in several genetic models, the initial insult could be described as the mutation leading to epilepsy that, to date, remains to be defined in this strain. The silent period ends at the occurrence of the first SRS, which is approximately at 2-3 months of age in these rats and after that time the chronic phase initiates, in which, absence seizures increase over time underlying likely further epileptogenic processes. In this review, we describe both the features of this experimental model and the effects of several pharmacological treatments against epileptogenesis and its related comorbidities including depressive-like symptoms and cognitive decline.

References

Ahern TH, Javors MA, Eagles DA, Martillotti J, Mitchell HA, Liles LC, et al. The effects of chronic norepinephrine transporter inactivation on seizure susceptibility in mice. Neuropsychopharmacology. 2005;31(4):730-738. https://doi.org/10.1038/sj.npp.1300847

Ateş N, Akman O, Karson A. The effects of the immature rat model of febrile seizures on the occurrence of later generalized tonic-clonic and absence epilepsy. Brain Res Dev Brain Res. 2004;154(1):137-140. https://doi.org/10.1016/j.devbrainres.2004.10.001

Berg AT, Levy SR, Testa FM, Blumenfeld H. Long-term seizure remission in childhood absence epilepsy: might initial treatment matter? Epilepsia. 2014;55(4):551-557. https://doi.org/10.1111/epi.12551

Besag F, Caplan R, Aldenkamp A, Dunn DW, Gobbi G, Sillanpää M. Psychiatric and Behavioural Disorders in Children with Epilepsy (ILAE Task Force Report): Behavioural effects of epilepsy surgery. Epileptic Disord. 2016. https://doi.org/10.1684/epd.2016.0818

Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia. 2008;49(3):400-409. https://doi.org/10.1111/j.1528-1167.2007.01458.x

Caplan R, Siddarth P, Stahl L, Lanphier E, Vona P, Gurbani S, et al. Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia. 2008;49(11):1838-1846. https://doi.org/10.1111/j.1528-1167.2008.01680.x

Cardamone L, Salzberg MR, Koe AS, Ozturk E, O'Brien TJ, Jones NC. Chronic antidepressant treatment accelerates kindling epileptogenesis in rats. Neurobiol Dis. 2013;63:194-200. https://doi.org/10.1016/j.nbd.2013.11.020

Chen B, Choi H, Hirsch LJ, Legge A, Buchsbaum R, Detyniecki K. Cross-sensitivity of psychiatric and behavioral side effects with antiepileptic drug use. Seizure. 2018;62:38-42. https://doi.org/10.1016/j.seizure.2018.09.014

Citraro R, Aiello R, Franco V, De Sarro G, Russo E. Targeting α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors in epilepsy. Expert Opin Ther Targets. 2014;18(3):319-334. https://doi.org/10.1517/14728222.2014.874416

Citraro R, Chimirri S, Aiello R, Gallelli L, Trimboli F, Britti D, et al. Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia. 2014;55(8):1284-1291. https://doi.org/10.1111/epi.12686

Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res. 2016;107:333-343. https://doi.org/10.1016/j.phrs.2016.03.039

Citraro R, Leo A, De Fazio P, De Sarro G, Russo E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol. 2015;172(12):3177-3188. https://doi.org/10.1111/bph.13121

Citraro R, Leo A, Franco V, Marchiselli R, Perucca E, De Sarro G, et al. Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia. 2016;58(2):231-238. https://doi.org/10.1111/epi.13629

Citraro R, Leo A, Marra R, De Sarro G, Russo E. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Research Bulletin. 2015;113:1-7. https://doi.org/10.1016/j.brainresbull.2015.02.004

Citraro R, Leo A, Santoro M, D'agostino G, Constanti A, Russo E. Role of Histone Deacetylases (HDACs) in Epilepsy and Epileptogenesis. Curr Pharm Des. 2017;23(37):5546-5562. https://doi.org/10.2174/1381612823666171024130001

Citraro R, Scicchitano F, De Fazio S, Raggio R, Mainardi P, Perucca E, et al. Preclinical activity profile of α-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res. 2011;95(1-2):60-69. https://doi.org/10.1016/j.eplepsyres.2011.02.013

Coenen AML, Van Luijtelaar ELJM. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet. 2003;33(6):635-655. https://doi.org/10.1023/A:1026179013847

D'Antuono M, Inaba Y, Biagini G, D'Arcangelo G, Tancredi V, Avoli M. Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures. Genes Brain Behav. 2006;5(1):73-84. https://doi.org/10.1111/j.1601-183X.2005.00146.x

Dezsi G, Ozturk E, Stanic D, Powell KL, Blumenfeld H, O'Brien TJ, et al. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia. 2013;54(4):635-643. https://doi.org/10.1111/epi.12118

Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia. 2012;53(7):1119-1130. https://doi.org/10.1111/j.1528-1167.2012.03506.x

Gao F, Liu Y, Li X, Wang Y, Wei D, Jiang W. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav. 2012;103(2):187-196. https://doi.org/10.1016/j.pbb.2012.08.025

Gauguier D, van Luijtelaar G, Bihoreau MT, Wilder SP, Godfrey RF, Vossen J, et al. Chromosomal mapping of genetic loci controlling absence epilepsy phenotypes in the WAG/Rij rat. Epilepsia. 2004;45(8):908-915. https://doi.org/10.1111/j.0013-9580.2004.13104.x

Gol M, Ghorbanian D, Hassanzadeh S, Javan M, Mirnajafi-Zadeh J, Ghasemi-Kasman M. Fingolimod enhances myelin repair of hippocampus in pentylenetetrazol-induced kindling model. Eur J Pharm Sci. 2017;96:72-83. https://doi.org/10.1016/j.ejps.2016.09.016

Hamid H, Kanner AM. Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs? Epilepsy & Behavior. 2013;26(3):261-265. https://doi.org/10.1016/j.yebeh.2012.10.009

Hesdorffer DC, Hauser WA, Olafsson E, Ludvigsson P, Kjartansson O. Depression and suicide attempt as risk factors for incident unprovoked seizures. Ann Neurol. 2005;59(1):35-41. https://doi.org/10.1002/ana.20685

Jafarian M, Karimzadeh F, Alipour F, Attari F, Lotfinia AA, Speckmann EJ, et al. Cognitive impairments and neuronal injury in different brain regions of a genetic rat model of absence epilepsy. Neuroscience. 2015;298:161. https://doi.org/10.1016/j.neuroscience.2015.04.033

Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977-987. https://doi.org/10.1038/nrd1901

Jakus R, Graf M, Juhasz G, Gerber K, Levay G, Halasz P, et al. 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike-wave discharges in a genetic rat model of absence epilepsy. Exp Neurol. 2004;184(2):964-972. https://doi.org/10.1016/S0014-4886(03)00352-2

Kanner AM, Mazarati A, Koepp M. Biomarkers of epileptogenesis: psychiatric comorbidities (?). Neurotherapeutics. 2014;11(2):358-372. https://doi.org/10.1007/s13311-014-0271-4

Kanner AM. Management of psychiatric and neurological comorbidities in epilepsy. Nature Reviews Neurology. 2016;12(2):106-116. https://doi.org/10.1038/nrneurol.2015.243

Karson A, Utkan T, Balcı F, Arıcıoğlu F, Ateş N. Age-dependent decline in learning and memory performances of WAG/Rij rat model of absence epilepsy. Behavioral and Brain Functions. 2012;8(1):51. https://doi.org/10.1186/1744-9081-8-51

Klein JP, Khera DS, Nersesyan H, Kimchi EY, Waxman SG, Blumenfeld H. Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res. 2004;1000(1-2):102-109. https://doi.org/10.1016/j.brainres.2003.11.051

Kobow K, Auvin S, Jensen F, Löscher W, Mody I, Potschka H, et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia. 2012;53(11):1868-1876. https://doi.org/10.1111/j.1528-1167.2012.03716.x

Kole MHP, Bräuer AU, Stuart GJ. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J Physiol (Lond). 2006;578(Pt 2):507-525. https://doi.org/10.1113/jphysiol.2006.122028

Korczyn AD, Schachter SC, Brodie MJ, Dalal SS, Engel J, Guekht A, et al. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2). Epilepsy & Behavior. 2013;28(2):283-302. https://doi.org/10.1016/j.yebeh.2013.03.012

Kovács Z, Czurkó A, Kékesi KA, Juhász G. Clomipramine increases the incidence and duration of spike-wave discharges in freely moving WAG/Rij rats. Epilepsy Res. 2010;90(1-2):167-170. https://doi.org/10.1016/j.eplepsyres.2010.02.011

Kovács Z, Czurkó A, Kékesi KA, Juhász G. Neonatal tricyclic antidepressant clomipramine treatment reduces the spike-wave discharge activity of the adult WAG/Rij rat. Brain Research Bulletin. 2012;89(3-4):102-107. https://doi.org/10.1016/j.brainresbull.2012.07.010

Leo A, Citraro R, Amodio N, De Sarro C, Cantafio MEG, Constanti A, et al. Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics. 2017;14(4):1134. https://doi.org/10.1007/s13311-017-0550-y

Leo A, Citraro R, Marra R, Palma E, Di Donato Paola E, Constanti A, et al. The Sphingosine 1-Phosphate Signaling Pathway in Epilepsy: A Possible Role for the Immunomodulator Drug Fingolimod in Epilepsy Treatment. CNS Neurol Disord Drug Targets. 2016;16(3):311-325. https://doi.org/10.2174/1871527315666161104163031

Leo A, Constanti A, Coppola A, Citraro R, De Sarro G, Russo E. mTOR Signaling in Epilepsy and Epileptogenesis. Molecules to Medicine with mTOR. 2016. 1 p. https://doi.org/10.1016/b978-0-12-802733-2.00006-2

Leo A, Giovannini G, Russo E, Meletti S. The role of AMPA receptors and their antagonists in status epilepticus. Epilepsia. 2018;59(6):1098-1108. https://doi.org/10.1111/epi.14082

Li C, Silva J, Ozturk E, Dezsi G, O'Brien TJ, Renoir T, et al. Chronic fluoxetine treatment accelerates kindling epileptogenesis in mice independently of 5-HT2A receptors. Epilepsia. 2018;59(7):e114-e119. https://doi.org/10.1111/epi.14435

Liautard C, Scalmani P, Carriero G, de Curtis M, Franceschetti S, Mantegazza M. Hippocampal hyperexcitability and specific epileptiform activity in a mouse model of Dravet syndrome. Epilepsia. 2013;54(7):1251-1261. https://doi.org/10.1111/epi.12213

Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res. 2017;42(7):1873-1888. https://doi.org/10.1007/s11064-017-2222-z

Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res. 2016;126:157-184. https://doi.org/10.1016/j.eplepsyres.2016.05.016

Lüttjohann A, Zhang S, de Peijper R, van Luijtelaar G. Electrical stimulation of the epileptic focus in absence epileptic WAG/Rij rats: assessment of local and network excitability. Neuroscience. 2011;188:125-134. https://doi.org/10.1016/j.neuroscience.2011.04.038

Marguet SL, Le-Schulte VTQ, Merseburg A, Neu A, Eichler R, Jakovcevski I, et al. Treatment during a vulnerable developmental period rescues a genetic epilepsy. Nat Med. 2015;21(12):1436-1444. https://doi.org/10.1038/nm.3987

Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, Coenen AML, da Silva FHL. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22(4):1480-1495. https://doi.org/10.1523/JNEUROSCI.22-04-01480.2002

Midzyanovskaya I, Kopilov M, Fedotova E, Kuznetsova G, Tuomisto L. Dual effect of pyrilamine on absence seizures in WAG/Rij rats. Inflamm Res. 2005;54 Suppl 1:S40-41. https://doi.org/10.1007/s00011-004-0418-6

Midzyanovskaya IS, Shatskova AB, Sarkisova KY, van Luijtelaar G, Tuomisto L, Kuznetsova GD. Convulsive and nonconvulsive epilepsy in rats: effects on behavioral response to novelty stress. Epilepsy & Behavior. 2005;6(4):543-551. https://doi.org/10.1016/j.yebeh.2005.03.005

Mula M, Hesdorffer DC. Suicidal behavior and antiepileptic drugs in epilepsy: analysis of the emerging evidence. Drug Healthc Patient Saf. 2011;3:15-20. https://doi.org/10.2147/DHPS.S13070

Mula M. Depression in epilepsy. Curr Opin Neurol. 2017;30(2):180-186. https://doi.org/10.1097/WCO.0000000000000431

Pitkänen A, Engel J. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11(2):231-241. https://doi.org/10.1007/s13311-014-0257-2

Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, et al. Advances in the development of biomarkers for epilepsy. The Lancet Neurology. 2016;15(8):843-856. https://doi.org/10.1016/S1474-4422(16)00112-5

Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(10):a022822. https://doi.org/10.1101/cshperspect.a022822

Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. The Lancet Neurology. 2011;10(2):173-186. https://doi.org/10.1016/S1474-4422(10)70310-0

Pitkänen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, et al. Issues related to development of antiepileptogenic therapies. Epilepsia. 2013;54 Suppl 4:35-43. https://doi.org/10.1111/epi.12297

Pitsch J, Kuehn JC, Gnatkovsky V, Müller JA, van Loo KMJ, de Curtis M, et al. Anti-epileptogenic and Anti-convulsive Effects of Fingolimod in Experimental Temporal Lobe Epilepsy. Mol Neurobiol. 2018;. https://doi.org/10.1007/s12035-018-1181-y

Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol Med. 2015;21(6):354-363. https://doi.org/10.1016/j.molmed.2015.03.006

Rajanikant GK, Zemke D, Kassab M, Majid A. The therapeutic potential of statins in neurological disorders. Curr Med Chem. 2007;14(1):103-112. https://doi.org/10.2174/092986707779313462

Rayner G. The Contribution of Cognitive Networks to Depression in Epilepsy. Epilepsy Currents. 2017;17(2):78-83. https://doi.org/10.5698/1535-7511.17.2.78

Rimoli MG, Russo E, Cataldi M, Citraro R, Ambrosino P, Melisi D, et al. T-type channel blocking properties and antiabsence activity of two imidazo[1,2-b]pyridazine derivatives structurally related to indomethacin. Neuropharmacology. 2008;56(3):637-646. https://doi.org/10.1016/j.neuropharm.2008.11.003

Rudzinski LA, Meador KJ. Epilepsy and neuropsychological comorbidities. Continuum (Minneap Minn). 2013;19(3 Epilepsy):682-696. https://doi.org/10.1212/01.CON.0000431382.06438.cd

Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, et al. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev. 2016;71:388-408. https://doi.org/10.1016/j.neubiorev.2016.09.017

Russo E, Citraro R, De Fazio S, Torcasio G, De Sarro G, Di Paola ED. Effects of ethanol on the development of genetically determined epilepsies in rats. Int J Dev Neurosci. 2008;26(7):739-744. https://doi.org/10.1016/j.ijdevneu.2008.07.002

Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, et al. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology. 2013;69:25-36. https://doi.org/10.1016/j.neuropharm.2012.09.019

Russo E, Citraro R, Scicchitano F, De Fazio S, Di Paola ED, Constanti A, et al. Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia. 2010;51(8):1560-1569. https://doi.org/10.1111/j.1528-1167.2009.02400.x

Russo E, Citraro R, Scicchitano F, De Fazio S, Perrotta I, Perrota I, et al. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia. 2011;52(7):1341-1350. https://doi.org/10.1111/j.1528-1167.2011.03112.x

Russo E, Citraro R, Scicchitano F, Urzino A, Marra R, Rispoli V, et al. Vigabatrin has antiepileptogenic and antidepressant effects in an animal model of epilepsy and depression comorbidity. Behav Brain Res. 2011;225(1):373-376. https://doi.org/10.1016/j.bbr.2011.07.030

Russo E, Citraro R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods. 2018;310:54-62. https://doi.org/10.1016/j.jneumeth.2018.05.020

Russo E, Follesa P, Citraro R, Camastra C, Donato A, Isola D, et al. The mTOR signaling pathway and neuronal stem/progenitor cell proliferation in the hippocampus are altered during the development of absence epilepsy in a genetic animal model. Neurol Sci. 2014;35(11):1793-1799. https://doi.org/10.1007/s10072-014-1842-1

Russo E, Gitto R, Citraro R, Chimirri A, De Sarro G. New AMPA antagonists in epilepsy. Expert Opin Investig Drugs. 2012;21(9):1371-1389. https://doi.org/10.1517/13543784.2012.705277

Russo E, Scicchitano F, Citraro R, Aiello R, Camastra C, Mainardi P, et al. Protective activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience. 2012;226:282-288. https://doi.org/10.1016/j.neuroscience.2012.09.021

Salpekar JA, Mula M. Common psychiatric comorbidities in epilepsy: How big of a problem is it? Epilepsy & Behavior. 2018. https://doi.org/10.1016/j.yebeh.2018.07.023

Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry. 2010;35(4):854-876. https://doi.org/10.1016/j.pnpbp.2010.11.010

Sarkisova KI, Folomkina AA. [Effect of selective serotonin reuptake inhibitor fluoxetine on symptoms of depression-like behavior in WAG/Rij rats]. Zh Vyssh Nerv Deiat Im I P Pavlova. 2010;60(1):98-108.

Sarkisova KY, Gabova AV, Kulikov MA, Fedosova EA, Shatskova AB, Morosov AA. Rearing by foster Wistar mother with high level of maternal care counteracts the development of genetic absence epilepsy and comorbid depression in WAG/Rij rats. Dokl Biol Sci. 2017;473(1):39-42. https://doi.org/10.1134/S0012496617020077

Sarkisova KY, Gabova AV. Maternal care exerts disease-modifying effects on genetic absence epilepsy and comorbid depression. Genes Brain Behav. 2018;17(7):e12477. https://doi.org/10.1111/gbb.12477

Sarkisova KY, Kulikov MA. Behavioral characteristics of WAG/Rij rats susceptible and non-susceptible to audiogenic seizures. Behav Brain Res. 2006;166(1):9-18. https://doi.org/10.1016/j.bbr.2005.07.024

Sarkisova KY, Kuznetsova GD, Kulikov MA, van Luijtelaar G. Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia. 2010;51(1):146. https://doi.org/10.1111/j.1528-1167.2009.02260.x

Scicchitano F, van Rijn CM, van Luijtelaar G. Unilateral and Bilateral Cortical Resection: Effects on Spike-Wave Discharges in a Genetic Absence Epilepsy Model. PLoS ONE. 2015;10(8):e0133594. https://doi.org/10.1371/journal.pone.0133594

Sitnikova E, Rutskova EM, Raevsky VV. Reduction of epileptic spike-wave activity in WAG/Rij rats fostered by Wistar dams. Brain Res. 2015;1594:305-309. https://doi.org/10.1016/j.brainres.2014.10.067

Sitnikova E. Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy. Brain Res. 2010;1377:109-118. https://doi.org/10.1016/j.brainres.2010.12.067

Strauss U, Kole MHP, Bräuer AU, Pahnke J, Bajorat R, Rolfs A, et al. An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur J Neurosci. 2004;19(11):3048-3058. https://doi.org/10.1111/j.0953-816X.2004.03392.x

Sueri C, Gasparini S, Balestrini S, Labate A, Gambardella A, Russo E, et al. Diagnostic Biomarkers of Epilepsy. Curr Pharm Biotechnol. 2018;19(6):440-450. https://doi.org/10.2174/1389201019666180713095251

Terrone G, Pauletti A, Pascente R, Vezzani A. Preventing epileptogenesis: A realistic goal? Pharmacol Res. 2016;110:96-100. https://doi.org/10.1016/j.phrs.2016.05.009

Trinka E. Ideal characteristics of an antiepileptic drug: how do these impact treatment decisions for individual patients? Acta Neurol Scand, Suppl. 2012;(194):10-18. https://doi.org/10.1111/ane.12015

van Luijtelaar G, Mishra AM, Edelbroek P, Coman D, Frankenmolen N, Schaapsmeerders P, et al. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis. 2013;60:126-138. https://doi.org/10.1016/j.nbd.2013.08.013

van Luijtelaar G, Onat FY, Gallagher MJ. Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol Dis. 2014;72 Pt B:167-179. https://doi.org/10.1016/j.nbd.2014.08.014

van Luijtelaar G, Sitnikova E, Littjohann A. On the origin and suddenness of absences in genetic absence models. Clin EEG Neurosci. 2011;42(2):83-97. https://doi.org/10.1177/155005941104200209

van Luijtelaar G, Sitnikova E. Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci Biobehav Rev. 2006;30(7):983-1003. https://doi.org/10.1016/j.neubiorev.2006.03.002

van Luijtelaar G, Zobeiri M. Progress and outlooks in a genetic absence epilepsy model (WAG/Rij). Curr Med Chem. 2014;21(6):704-721. https://doi.org/10.2174/0929867320666131119152913

Verrotti A, Matricardi S, Rinaldi VE, Prezioso G, Coppola G. Neuropsychological impairment in childhood absence epilepsy: Review of the literature. J Neurol Sci. 2015;359(1-2):59-66. https://doi.org/10.1016/j.jns.2015.10.035

Wei Y, Yemisci M, Kim H-H, Yung LM, Shin HK, Hwang S-K, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69(1):119-129. https://doi.org/10.1002/ana.22186

Zhang B, McDaniel SS, Rensing NR, Wong M. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS ONE. 2013;8(2):e57445. https://doi.org/10.1371/journal.pone.0057445

Published
2019-02-25
How to Cite
Leo, A., De Caro, C., Nesci, V., Tallarico, M., Mangano, G., Palma, E., Iannone, M., De Sarro, G., Citraro, R. and Russo, E. (2019) “WAG/Rij rat model: a resource for the pharmacology of epileptogenesis and related neurological/psychiatric comorbidities”, Neuroscience Research Notes, 1(3), pp. 18-34. doi: 10.31117/neuroscirn.v1i3.22.