Investigating cortical networks from vibrotactile stimulation in young adults using independent component analysis: an fMRI study

Authors

  • Faten Anis Syairah Seri Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia.
  • Aini Ismafairus Abd Hamid (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (3) Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • Jafri Malin Abdullah (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (3) Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • Zamzuri Idris (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (3) Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • Hazim Omar (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (3) Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • Muhammad Riddha Abdul Rahman (1) Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia. (2) Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v6i3.194

Keywords:

Functional Magnetic Resonance Imaging (fMRI), Somatosensory, Vibrotactile, Functional Connectivity , Independent component analysis

Abstract

This study investigated the functional connectivity of the neural networks when vibrotactile stimulation is applied to the fingertips of young adults. Twenty healthy, right-handed subjects were stimulated with vibrotactile stimulation whilst being scanned with a 3.0 T magnetic resonance imaging scanner. The subjects were stimulated at 30 Hz – 240 Hz using a piezoelectric vibrator attached to the subjects' bilateral index fingers. The scanned data were processed with independent component analysis (ICA), while the temporal configuration and spatial localisation of the component were investigated. The activation locations were tabulated and compared with regions of somatosensory in the brain. Using ICA, somatosensory regions and their neighbouring areas identified one or more of these components mapped to the common significant regions in the medial frontal gyrus (MFG), paracentral lobule (PaCL), precentral gyrus (PrG), postcentral gyrus (PoG), inferior parietal lobule (IPL), and cingulate gyrus (CgG). Using Neuromark as a reference, six significant networks with the highest correlation values, r>0.5, were identified: the visual network (VIN), sensorimotor network (SMN), cognitive-control network (CCN), subcortical network (SCN), default-mode network (DMN), and auditory network (AUN). It showed that VIN and SMN were the most activated during the vibrotactile stimulation. A comparison of the network volumes and peak activations during the conditions demonstrated changes in volume and corresponding peak activation during vibrotactile stimulation. This study contributes to a better understanding of the underlying mechanisms of the somatosensory areas. Other than that, not only this study highlighted the underlying effect of vibrotactile stimulation towards the functional brain connectivity at network levels, but it also highlighted the impact of frequencies in somatosensory studies. In the future, we suggest that exploring the change in the range of frequencies and examining its differences will allow us to comprehend aspects of somatosensory networks and their connectivity.

References

Akselrod, M., Martuzzi, R., Serino, A., van der Zwaag, W., Gassert, R., & Blanke, O. (2017). Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. NeuroImage, 159, 473–487. https://doi.org/10.1016/j.neuroimage.2017.06.021

Ali, K., & Al-Hameed, A. (2022). Spearman's correlation coefficient in statistical analysis. International Journal of Nonlinear Analysis and Applications, 13, 2008–6822. https://doi.org/10.22075/ijnaa.2022.6079

Araneda, R., Moura, S. S., Dricot, L., & De Volder, A. G. (2021). Beat detection recruits the visual cortex in early blind subjects. Life, 11(4), 296. https://doi.org/10.3390/life11040296

Behler, O., & Uppenkamp, S. (2020). Activation in human auditory cortex in relation to the loudness and unpleasantness of low-frequency and infrasound stimuli. PLoS ONE, 15(2), e0229088. https://doi.org/10.1371/journal.pone.0229088

Beugels, J., van den Hurk, J., Peters, J. C., Heuts, E. M., Tuinder, S. M. H., Goebel, R., & van der Hulst, R. R. W. J. (2020). Somatotopic mapping of the human breast using 7 T functional MRI. NeuroImage, 204, 116201. https://doi.org/10.1016/j.neuroimage.2019.116201

Boslaugh, S., & Watters, P. A. (2008). Statistics in a Nutshell: A Desktop Quick Reference. O’Reilly Media. https://books.google.com/books/about/Statistics_in_a_Nutshell.html?id=ZnhgO65Pyl4C

Burton, H., Agato, A., & Sinclair, R. J. (2012). Repetition learning of vibrotactile temporal sequences: An fMRI study in blind and sighted individuals. Brain Research, 1433, 69–79. https://doi.org/10.1016/j.brainres.2011.11.039

Burton, H., Sinclair, R. J., & McLaren, D. G. (2008). Cortical network for vibrotactile attention: a fMRI study. Human Brain Mapping, 29(2), 207–221. https://doi.org/10.1002/hbm.20384

Cassady, K., Ruitenberg, M. F. L., Reuter-Lorenz, P. A., Tommerdahl, M., & Seidler, R. D. (2020). Neural Dedifferentiation across the Lifespan in the Motor and Somatosensory Systems. Cerebral Cortex, 30(6), 3704–3716. https://doi.org/10.1093/cercor/bhz336

Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased functional connectivity between subcortical and cortical resting-state networks in Autism spectrum disorder. JAMA Psychiatry, 72(8), 767–777. https://doi.org/10.1001/jamapsychiatry.2015.0101

Chakravarty, M. M., Rosa-Neto, P., Broadbent, S., Evans, A. C., & Collins, D. L. (2009). Robust S1, S2, and thalamic activations in individual subjects with vibrotactile stimulation at 1.5 and 3.0 T. Human Brain Mapping, 30(4), 1328–1337. https://doi.org/10.1002/hbm.20598

Choi, M. H., Kim, S. P., Kim, H. S., & Chung, S. C. (2016). Inter-and Intradigit Somatotopic Map of High-Frequency Vibration Stimulations in Human Primary Somatosensory Cortex. Medicine (United States), 95(20), 1–9. https://doi.org/10.1097/MD.0000000000003714

Chung, Y. G., Kim, J., Han, S. W., Kim, H. S., Choi, M. H., Chung, S. C., Park, J. Y., & Kim, S. P. (2013). Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: A fMRI study. Brain Research, 1504, 47–57. https://doi.org/10.1016/j.brainres.2013.02.003

Cole, D. M., Stämpfli, P., Gandia, R., Schibli, L., Gantner, S., Schuetz, P., & Meier, M. L. (2022). In the back of your mind: Cortical mapping of tactile and proprioceptive paraspinal afferent inputs. Human Brain Mapping. 43(16), 4943–4953. https://doi.org/10.1002/hbm.26052

Corbetta, M., Burton, H., Sinclair, R. J., Conturo, T. E., Akbudak, E., & McDonald, J. W. (2002). Functional sreorganisation and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 17066–17071. https://doi.org/10.1073/pnas.262669099

Deuchert, M., Ruben, J., Schwiemann, J., Meyer, R., Thees, S., Krause, T., Blankenburg, F., Villringer, K., Kurth, R., Curio, G., & Villringer, A. (2002). Event-related fMRI of the somatosensory system using electrical finger stimulation. NeuroReport, 13(3), 365–369. https://doi.org/10.1097/00001756-200203040-00023

Ding, H., Ming, D., Wan, B., Li, Q., Qin, W., & Yu, C. (2016). Enhanced spontaneous functional connectivity of the superior temporal gyrus in early deafness. Scientific Reports, 6, 23239. https://doi.org/10.1038/srep23239

Du, Y., & Fan, Y. (2013). Group information guided ICA for fMRI data analysis. NeuroImage, 69, 157–197. https://doi.org/10.1016/j.neuroimage.2012.11.008

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., Salman, M., Abrol, A., Rahaman, M. A., Chen, J., Hong, L. E., Kochunov, P., Osuch, E. A., & Calhoun, V. D. (2020). NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage: Clinical, 28, 102375. https://doi.org/10.1016/j.nicl.2020.102375

Du, Y., He, X., & Calhoun, V. D. (2021). SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 3263–3266. https://doi.org/10.1109/EMBC46164.2021.9630284

Eickhoff, S. B., & Müller, V. I. (2015). Functional Connectivity. In Brain Mapping: An Encyclopedic Reference, 2, 187–201. https://doi.org/10.1016/B978-0-12-397025-1.00212-8

Elseoud, A. A., Littow, H., Remes, J., Starck, T., Nikkinen, J., Nissilä, J., Timonen, M., Tervonen, O., & Kiviniemi, V. (2011). Group-ICA model order highlights patterns of functional brain connectivity. Frontiers in Systems Neuroscience, 5, 37. https://doi.org/10.3389/fnsys.2011.00037

Francis, S. T., Kelly, E. F., Bowtell, R., Dunseath, W. J. R., Folger, S. E., & McGlone, F. (2000). fMRI of the responses to vibratory stimulation of digit tips. NeuroImage, 11(3), 188–202. https://doi.org/10.1006/nimg.2000.0541

Friedrich, J., Mückschel, M., & Beste, C. (2018). Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study. Brain Structure and Function, 223(2), 687–699. https://doi.org/10.1007/s00429-017-1515-y

Golaszewski, S. M., Siedentopf, C. M., Baldauf, E., Koppelstaetter, F., Eisner, W., Unterrainer, J., Guendisch, G. M., Mottaghy, F. M., & Felber, S. R. (2002). Functional magnetic resonance imaging of the human sensorimoto cortex using a novel vibrotactile stimulator. NeuroImage, 17(1), 421–430. https://doi.org/10.1006/nimg.2002.1195

Golaszewski, S. M., Siedentopf, C. M., Koppelstaetter, F., Fend, M., Ischebeck, A., Gonzalez-Felipe, V., Haala, I., Struhal, W., Mottaghy, F. M., Gallasch, E., Felber, S. R., & Gerstenbrand, F. (2006). Human brain structures related to plantar vibrotactile stimulation: A functional magnetic resonance imaging study. NeuroImage, 29(3), 923–929. https://doi.org/10.1016/j.neuroimage.2005.08.052

Goltz, D., Pleger, B., Thiel, S., Villringer, A., & Müller, M. M. (2013). Sustained spatial attention to vibrotactile stimulation in the flutter range: Relevant brain regions and their interaction. PLoS ONE, 8(12), 1–12. https://doi.org/10.1371/journal.pone.0084196

Hagen, M. C., & Pardo, J. V. (2002). PET studies of somatosensory processing of light touch. Behavioural Brain Research, 135(1-2), 133–140. https://doi.org/10.1016/s0166-4328(02)00142-0

Hegner, Y. L., Lee, Y., Grodd, W., & Braun, C. (2010). Comparing Tactile Pattern and Vibrotactile Frequency Discrimination: A Human fMRI Study. Journal of Neurophysiology, 103(6), 3115–3122. https://doi.org/10.1152/jn.00940.2009

Hegner, Y. L., Saur, R., Veit, R., Butts, R., Leiberg, S., Grodd, W., & Braun, C. (2007). BOLD adaptation in vibrotactile stimulation: Neuronal networks involved in frequency discrimination. Journal of Neurophysiology, 97(1), 264–271. https://doi.org/10.1152/jn.00617.2006

Iandolo, R., Bellini, A., Saiote, C., Marre, I., Bommarito, G., Oesingmann, N., Fleysher, L., Mancardi, G. L., Casadio, M., & Inglese, M. (2018). Neural correlates of lower limbs proprioception: An fMRI study of foot position matching. Human Brain Mapping, 39(5), 1929–1944. https://doi.org/10.1002/hbm.23972

Jaatela, J., Aydogan, D. B., Nurmi, T., Vallinoja, J., & Piitulainen, H. (2022). Identification of Proprioceptive Thalamocortical Tracts in Children: Comparison of fMRI, MEG, and Manual Seeding of Probabilistic Tractography. Cerebral Cortex, 32(17), 37366–3751. https://doi.org/10.1093/cercor/bhab444

Jung, W. M., Ryu, Y., Park, H. J., Lee, H., & Chae, Y. (2018). Brain activation during the expectations of sensory experience for cutaneous electrical stimulation. NeuroImage: Clinical, 19, 982–989. https://doi.org/10.1016/j.nicl.2018.06.022

Kim, J., Chung, Y. G., Chung, S. C., Bulthoff, H. H., & Kim, S. P. (2016). Neural sCategorisation of Vibrotactile Frequency in Flutter and Vibration Stimulations: An fMRI Study. IEEE Transactions on Haptics, 9(4), 455–464. https://doi.org/10.1109/TOH.2016.2593727

Kim, J., Müller, K.-R., Chung, Y. G., Chung, S.-C., Park, J.-Y., Bülthoff, H. H., & Kim, S.-P. (2015). Distributed functions of detection and discrimination of vibrotactile stimuli in the hierarchical human somatosensory system. Frontiers in Human Neuroscience, 8(January), 1–10. https://doi.org/10.3389/fnhum.2014.01070

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239. https://doi.org/10.1016/S1053-8119(03)00169-1

Malone, P. S., Eberhardt, S. P., Wimmer, K., Sprouse, C., Klein, R., Glomb, K., Scholl, C. A., Bokeria, L., Cho, P., Deco, G., Jiang, X., Bernstein, L. E., & Riesenhuber, M. (2019). Neural mechanisms of vibrotactile categorisation. Human Brain Mapping, 40(10), 3078–3090. https://doi.org/10.1002/hbm.24581

Moritz, C. H., Haughton, V. M., Cordes, D., Quigley, M., & Meyerand, M. E. (2000). Whole-brain Functional MR Imaging Activation from a Finger-tapping Task Examined with Independent Component Analysis. American Journal of Neuroradiology, 21(9), 1629–1635.

Motovilova, E., & Winkler, S. A. (2022). Overview of Methods for Noise and Heat Reduction in MRI Gradient Coils. Frontiers in Physics, 10, 907619. https://doi.org/10.3389/fphy.2022.907619

Nazarian, B., Caron-Guyon, J., Anton, J. L., Sein, J., Baurberg, J., Catz, N., & Kavounoudias, A. (2022). A new patterned air-flow device to reveal the network for tactile motion coding using fMRI. Journal of Neuroscience Methods, 365, 109397. https://doi.org/https://doi.org/10.1016/j.jneumeth.2021.109397

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Park, J. W., Kim, Y. H., Jang, S. H., Chang, W. H., Park, C. H., & Kim, S. T. (2010). Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation, 26(2), 95–103. https://doi.org/10.3233/NRE-2010-0540

Pechenkova, E. V., Nosikova, I. N., Rumshiskaya, A. D., Litvinova, L. D., Rukavishnikov, I. V., Mershina, E. A., Sinitsin, V. E., Van Ombergen, A., Jeurissen, B., Jillings, S. D., Laureys, S., Sijbers, J., Grishin, A., Chernikova, L. A., Naumov, I. A., Kornilova, L. N., Wuyts, F. L., Tomilovskaya, E. S., & Kozlovskaya, I. B. (2019). Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Frontiers in Physiology, 10(May), 761. https://doi.org/10.3389/fphys.2019.00761

Pfannmöller, J. P., Greiner, M., Balasubramanian, M., & Lotze, M. (2016). High-resolution fMRI investigations of the fingertip somatotopy and variability in BA3b and BA1 of the primary somatosensory cortex. Neuroscience, 339, 667–677. https://doi.org/10.1016/j.neuroscience.2016.10.036

Puckett, A. M., Bollmann, S., Barth, M., & Cunnington, R. (2017). Measuring the effects of attention to individual fingertips in somatosensory cortex using ultra-high field (7T) fMRI. NeuroImage, 161, 179–187. https://doi.org/10.1016/j.neuroimage.2017.08.014

Quintana, D. S. (2023). A guide for calculating study-level statistical power for meta-analyses. Advances in Methods and Practices in Psychological Science, 6,(1). https://doi.org/10.1177/25152459221147260

Rabe, F., Kikkert, S., & Wenderoth, N. (2021). Finger representations in primary somatosensory cortex are modulated by a vibrotactile working memory task. BioRxiv, 340(1), 1–33. https://doi.org/10.1101/2021.10.29.466459

Renier, L. A., Anurova, I., De Volder, A. G., Carlson, S., VanMeter, J., & Rauschecker, J. P. (2009). Multisensory Integration of Sounds and Vibrotactile Stimuli in Processing Streams for "What" and "Where." Journal of Neuroscience, 29(35), 10950–10960. https://doi.org/10.1523/JNEUROSCI.0910-09.2009

Rondinoni, C., Amaro, E., Cendes, F., dos Santos, A. C., & Salmon, C. E. G. (2013). Effect of scanner acoustic background noise on strict resting-state fMRI. Brazilian Journal of Medical and Biological Research, 46(4), 359–367. https://doi.org/10.1590/1414-431X20132799

Rosazza, C., Minati, M., Ghielmetti, F., Mandelli, M. L., & Bruzzone, M. G. (2012). Functional connectivity during resting-state functional MR imaging: Study of the correspondence between independent component analysis and region-of-interest - Based methods. American Journal of Neuroradiology, 33(1), 180–187. https://doi.org/10.3174/ajnr.A2733

Sauvage, C., Poirriez, S., Manto, M., Jissendi, P., & Habas, C. (2011). Reevaluating brain networks activated during mental imagery of finger movements using probabilistic Tensorial Independent Component Analysis (TICA). Brain Imaging and Behavior, 5(2), 137–148. https://doi.org/10.1007/s11682-011-9118-3

Schweisfurth, M. A., Frahm, J., & Schweizer, R. (2014). Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex. Frontiers in Human Neuroscience, 8(SEP), 1–14. https://doi.org/10.3389/fnhum.2014.00658

Schweisfurth, M. A., Frahm, J., & Schweizer, R. (2015). Individual left-hand and right-hand intra-digit representations in human primary somatosensory cortex. European Journal of Neuroscience, 42(5), 2155–2163. https://doi.org/10.1111/ejn.12978

Schweisfurth, M. A., Schweizer, R., & Frahm, J. (2011). Functional MRI indicates consistent intra-digit topographic maps in the little but not the index finger within the human primary somatosensory cortex. NeuroImage, 56(4), 2138–2143. https://doi.org/10.1016/j.neuroimage.2011.03.038

Sengupta, A., Ackerley, R., Watkins, R. H., Panchuelo, R. S., Paul, G., Wessberg, J., & Francis, S. (2019). Global responses to microstimulation at 7T and comparison with vibrotactile stimulation. Proceedings of Joint Annual Meeting ISMRM-ESMRMB, 0149. https://archive.ismrm.org/2018/0149.html

Seri, F. A. S., Abd Hamid, A. I., Abdullah, J. M., Idris, Z., & Omar, H. (2019). Brain responses to frequency changes due to vibratory stimulation of human fingertips: An fMRI study. Journal of Physics: Conference Series, 1248(1), 1–6. https://doi.org/10.1088/1742-6596/1248/1/012029

Seri, F. A. S., Abd Hamid, A. I., Abdullah, J. M., Idris, Z., & Omar, H. (2020). Brain responses to high frequencies (270 Hz-480 Hz) changes due to vibratory stimulation of human fingertips: An fMRI study. Journal of Physics: Conference Series, 1497, 012012. https://doi.org/10.1088/1742-6596/1497/1/012012

Siedentopf, C. M., Heubach, K., Ischebeck, A., Gallasch, E., Fend, M., Mottaghy, F. M., Koppelstaetter, F., Haala, I. A., Krause, B. J., Felber, S., Gerstenbrand, F., & Golaszewski, S. M. (2008). Variability of BOLD response evoked by foot vibrotactile stimulation: Influence of vibration amplitude and stimulus waveform. NeuroImage, 41(2), 504–510. https://doi.org/10.1016/j.neuroimage.2008.02.049

Sormaz, M., Murphy, C., Wang, H. T., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. S., Jefferies, E., & Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9318–9323. https://doi.org/10.1073/pnas.1721259115

Sörös, P., Marmurek, J., Tam, F., Baker, N., Staines, W. R., & Graham, S. J. (2007). Functional MRI of working memory and selective attention in vibrotactile frequency discrimination. BMC Neuroscience, 8, 1–10. https://doi.org/10.1186/1471-2202-8-48

Sung, E. J., Yoo, S. S., Yoon, H. W., Oh, S. S., Han, Y., & Park, H. W. (2007). Brain activation related to affective dimension during thermal stimulation in humans: A functional magnetic resonance imaging study. International Journal of Neuroscience, 117(7), 1011–1027. https://doi.org/10.1080/00207450600934432

Tomasi, D., & Volkow, N. D. (2011). Association between functional connectivity hubs and brain networks. Cerebral Cortex, 21(9), 2003–2013. https://doi.org/10.1093/cercor/bhq268

Uluç, I., Schmidt, T. T., Wu, Y. hao, & Blankenburg, F. (2018). Content-specific codes of parametric auditory working memory in humans. NeuroImage, 183, 254–262. https://doi.org/10.1016/j.neuroimage.2018.08.024

Willoughby, W. R., Thoenes, K., & Bolding, M. (2021). Somatotopic Arrangement of the Human Primary Somatosensory Cortex Derived From Functional Magnetic Resonance Imaging. Frontiers in Neuroscience, 14, 598482. https://doi.org/10.3389/fnins.2020.598482

Woolgar, A., & Zopf, R. (2017). Multisensory coding in the multiple-demand regions: vibrotactile task information is coded in frontoparietal cortex. Journal of Neurophysiology, 118, 703–716. https://doi.org/10.1152/jn.00559.2016

World Medical Association. (2013). World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Wu, L., Caprihan, A., Bustillo, J., Mayer, A., & Calhoun, V. (2018). An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia. NeuroImage, 179, 448–470. https://doi.org/10.1016/j.neuroimage.2018.06.024

Wu, Y., Velenosi, L. A., & Blankenburg, F. (2021). Response modality-dependent categorical choice representations for vibrotactile comparisons. NeuroImage, 226, 117592. https://doi.org/10.1016/j.neuroimage.2020.117592

Xu, J., Potenza, M. N., & Calhoun, V. D. (2013). Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Frontiers in Neuroscience, 7, 154. https://doi.org/10.3389/fnins.2013.00154

Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., Frederick, B. B., & Cong, F. (2021). Consistency of independent component analysis for FMRI. Journal of Neuroscience Methods, 351, 109013. https://doi.org/10.1016/j.jneumeth.2020.109013

Downloads

Published

2023-07-04

How to Cite

Seri, F. A. S., Abd Hamid, A. I., Abdullah, J. M., Idris, Z., Omar, H. and Abdul Rahman, M. R. (2023) “Investigating cortical networks from vibrotactile stimulation in young adults using independent component analysis: an fMRI study ”, Neuroscience Research Notes, 6(3), pp. 194.1–194.15. doi: 10.31117/neuroscirn.v6i3.194.