Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system

Authors

  • Olena Petrivna Sokolik Department of Pharmacology and Pharmacognosy, Odessa National Medical University, Odessa, Ukraine.
  • Galina Olexandrivna Prozorova Department of Pharmacy, Pylyp Orlyk International Classical University, Mykolayiv, Ukraine.

DOI:

https://doi.org/10.31117/neuroscirn.v5i3.151

Keywords:

Mitochondrial dysfunction, central nervous system, bipolar affective disorder, major depression, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease

Abstract

One of the promising therapy areas for many diseases of the central nervous system is the search for agents of selective effect on mitochondria. Both the mitochondria themselves and the mitochondrial metabolism of the transformed cell of the central nervous system and activation of energy metabolism by reprogrammed mitochondria give impetus for the development of mitochondrial pharmacology to use the special properties of transformed cells mitochondria as targets for neuroprotective and neuroplastic effects. In this review, we analyse literary sources of domestic and foreign authors about the influence of mitochondrial dysfunction on various links in the pathogenesis of central nervous system diseases. Based on currently available data, scientists divided all signs of mitochondrial dysfunction in schizophrenia into three groups: morphological disorders of mitochondria, signs of a violation of the oxidative phosphorylation system and dysregulation of genes responsible for mitochondrial proteins. The therapeutic effect of drugs for central nervous system disorders should focus on reducing the accumulation of metabolic products and tissue breakdown, restoring mitochondrial functions and synaptic plasticity, and protecting mitochondria from toxic effects, thereby alleviating cognitive disorders with a neuroprotective effect.

References

Amiri, S., Dizaji, R., Momeny, M., Gauvin, E., & Hosseini, M. J. (2021). Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology, 187, 108503. https://doi.org/10.1016/j.neuropharm.2021.108503

Ben-Shachar D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophrenia Research, 187, 3–10. https://doi.org/10.1016/j.schres.2016.10.022

Brown, P. J., Brennan, N., Ciarleglio, A., Chen, C., Garcia, C. M., Gomez, S., Roose, S. P., Rutherford, B. R., Simonsick, E. M., Spencer, R. G., & Ferrucci, L. (2019). Declining Skeletal Muscle Mitochondrial Function Associated With Increased Risk of Depression in Later Life. American Journal of Geriatric Psychiatry, 27(9), 963–971. https://doi.org/10.1016/j.jagp.2019.03.022

Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., Jeon, S., Santos, D. P., Blanz, J., Obermaier, C. D., Strojny, C., Savas, J. N., Kiskinis, E., Zhuang, X., Krüger, R., Surmeier, D. J., & Krainc, D. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 357(6357), 1255–1261. https://doi.org/10.1126/science.aam9080

Creed, R. B., Roberts, R. C., Farmer, C. B., McMahon, L. L., & Goldberg, M. S. (2021). Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiology of Disease, 150, 105246. https://doi.org/10.1016/j.nbd.2020.105246

de la Fuente, C., Burke, D. G., Eaton, S., & Heales, S. (2017). Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochemistry International, 109, 94–100. https://doi.org/10.1016/j.neuint.2017.02.013

E Silva, L., Brito, M. D., Yuzawa, J., & Rosenstock, T. R. (2019). Mitochondrial Dysfunction and Changes in High-Energy Compounds in Different Cellular Models Associated to Hypoxia: Implication to Schizophrenia. Scientific Reports, 9(1), 18049. https://doi.org/10.1038/s41598-019-53605-4

Fernandez, A., Meechan, D. W., Karpinski, B. A., Paronett, E. M., Bryan, C. A., Rutz, H. L., Radin, E. A., Lubin, N., Bonner, E. R., Popratiloff, A., Rothblat, L. A., Maynard, T. M., & LaMantia, A. S. (2019). Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron, 102(6), 1127–1142.e3. https://doi.org/10.1016/j.neuron.2019.04.013

Frye R. E. (2020). Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Seminars in Pediatric Neurology, 35, 100829. https://doi.org/10.1016/j.spen.2020.100829

Gevezova, M., Sarafian, V., Anderson, G., & Maes, M. (2020). Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & Neurological Disorders Drug Targets, 19(5), 320–333. https://doi.org/10.2174/1871527319666200628015039

Giménez-Palomo, A., Dodd, S., Anmella, G., Carvalho, A. F., Scaini, G., Quevedo, J., Pacchiarotti, I., Vieta, E., & Berk, M. (2021). The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Frontiers in Psychiatry, 12, 546801. https://doi.org/10.3389/fpsyt.2021.546801

Glausier, J. R., Enwright, J. F., 3rd, & Lewis, D. A. (2020). Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 177(12), 1140–1150. https://doi.org/10.1176/appi.ajp.2020.19111210

Gonçalves, V. F., Cappi, C., Hagen, C. M., Sequeira, A., Vawter, M. P., Derkach, A., Zai, C. C., Hedley, P. L., Bybjerg-Grauholm, J., Pouget, J. G., Cuperfain, A. B., Sullivan, P. F., Christiansen, M., Kennedy, J. L., & Sun, L. (2018). A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia. Biological Psychiatry, 83(9), 780–789. https://doi.org/10.1016/j.biopsych.2018.02.1175

González-Rodríguez, P., Zampese, E., Stout, K. A., Guzman, J. N., Ilijic, E., Yang, B., Tkatch, T., Stavarache, M. A., Wokosin, D. L., Gao, L., Kaplitt, M. G., López-Barneo, J., Schumacker, P. T., & Surmeier, D. J. (2021). Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 599(7886), 650–656. https://doi.org/10.1038/s41586-021-04059-0

Harland, M., Torres, S., Liu, J., & Wang, X. (2020). Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. Journal of Neuroscience, 40(8), 1756–1765. https://doi.org/10.1523/JNEUROSCI.2324-19.2020

Harrison, P. J., Geddes, J. R., & Tunbridge, E. M. (2018). The Emerging Neurobiology of Bipolar Disorder. Trends in Neurosciences, 41(1), 18–30. https://doi.org/10.1016/j.tins.2017.10.006

Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery, and Psychiatry, 91(8), 795–808. https://doi.org/10.1136/jnnp-2019-322338

Kanellopoulos, A. K., Mariano, V., Spinazzi, M., Woo, Y. J., McLean, C., Pech, U., Li, K. W., Armstrong, J. D., Giangrande, A., Callaerts, P., Smit, A. B., Abrahams, B. S., Fiala, A., Achsel, T., & Bagni, C. (2020). Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell, 180(6), 1178–1197.e20. https://doi.org/10.1016/j.cell.2020.02.044

Kato T. (2017). Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophrenia Research, 187, 62–66. https://doi.org/10.1016/j.schres.2016.10.037

Kato T. (2019). Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and Clinical Neurosciences, 73(9), 526–540. https://doi.org/10.1111/pcn.12852

Kato, T. M., Kubota-Sakashita, M., Fujimori-Tonou, N., Saitow, F., Fuke, S., Masuda, A., Itohara, S., Suzuki, H., & Kato, T. (2018). Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Molecular Psychiatry, 23(10), 2039–2049. https://doi.org/10.1038/s41380-018-0074-9

Kim J. H. (2018). Genetics of Alzheimer's Disease. Dementia and Neurocognitive Disorders, 17(4), 131–136. https://doi.org/10.12779/dnd.2018.17.4.131

Kim, Y., Vadodaria, K. C., Lenkei, Z., Kato, T., Gage, F. H., Marchetto, M. C., & Santos, R. (2019). Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxidants & Redox Ssignaling, 31(4), 275–317. https://doi.org/10.1089/ars.2018.7606

Koklesova, L., Samec, M., Liskova, A., Zhai, K., Büsselberg, D., Giordano, F. A., Kubatka, P., & Golunitschaja, O. (2021). Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. The EPMA Journal, 12(1), 27–40. https://doi.org/10.1007/s13167-021-00237-2

Macdonald, R., Barnes, K., Hastings, C., & Mortiboys, H. (2018). Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochemical Society Transactions, 46(4), 891–909. https://doi.org/10.1042/BST20170501

Malpartida, A. B., Williamson, M., Narendra, D. P., Wade-Martins, R., & Ryan, B. J. (2021). Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 46(4), 329–343. https://doi.org/10.1016/j.tibs.2020.11.007

McAvoy, K., & Kawamata, H. (2019). Glial mitochondrial function and dysfunction in health and neurodegeneration. Molecular and Cellular Neurosciences, 101, 103417. https://doi.org/10.1016/j.mcn.2019.103417

Moya, G. E., Rivera, P. D., & Dittenhafer-Reed, K. E. (2021). Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. International Journal of Molecular Sciences, 22(13), 7030. https://doi.org/10.3390/ijms22137030

Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A., & Krainc, D. (2019). Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends in Neurosciences, 42(2), 140–149. https://doi.org/10.1016/j.tins.2018.11.001

Ni, P., & Chung, S. (2020). Mitochondrial Dysfunction in Schizophrenia. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 42(6), e1900202. https://doi.org/10.1002/bies.201900202

Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Current Neurology and Neuroscience Reports, 18(5), 21. https://doi.org/10.1007/s11910-018-0829-3

Pereira, C., Chavarria, V., Vian, J., Ashton, M. M., Berk, M., Marx, W., & Dean, O. M. (2018). Mitochondrial Agents for Bipolar Disorder. International Journal of Neuropsychopharmacology, 21(6), 550–569. https://doi.org/10.1093/ijnp/pyy018

Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507. https://doi.org/10.1111/bph.14585

Rani, L., & Mondal, A. C. (2020). Emerging concepts of mitochondrial dysfunction in Parkinson's disease progression: Pathogenic and therapeutic implications. Mitochondrion, 50, 25–34. https://doi.org/10.1016/j.mito.2019.09.010

Roberts R. C. (2021). Mitochondrial dysfunction in schizophrenia: With a focus on post-mortem studies. Mitochondrion, 56, 91–101. https://doi.org/10.1016/j.mito.2020.11.009

Rocha, E. M., De Miranda, B., & Sanders, L. H. (2018). Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiology of Disease, 109(Pt B), 249–257. https://doi.org/10.1016/j.nbd.2017.04.004

Rose, S., Niyazov, D. M., Rossignol, D. A., Goldenthal, M., Kahler, S. G., & Frye, R. E. (2018). Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Molecular Diagnosis & Therapy, 22(5), 571–593. https://doi.org/10.1007/s40291-018-0352-x

Saxena, A., Scaini, G., Bavaresco, D. V., Leite, C., Valvassori, S. S., Carvalho, A. F., & Quevedo, J. (2017). Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. Molecular Neuropsychiatry, 3(2), 108–124. https://doi.org/10.1159/000480349

Scaini, G., Andrews, T., Lima, C., Benevenuto, D., Streck, E. L., & Quevedo, J. (2021). Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 57, 23–36. https://doi.org/10.1016/j.mito.2020.12.002

Schulmann, A., Ryu, E., Goncalves, V., Rollins, B., Christiansen, M., Frye, M. A., Biernacka, J., & Vawter, M. P. (2019). Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Molecular Neuropsychiatry, 5(1), 13–27. https://doi.org/10.1159/000495658

Shivakumar, V., Rajasekaran, A., Subbanna, M., Kalmady, S. V., Venugopal, D., Agrawal, R., Amaresha, A. C., Agarwal, S. M., Joseph, B., Narayanaswamy, J. C., Debnath, M., Venkatasubramanian, G., & Gangadhar, B. N. (2020). Leukocyte mitochondrial DNA copy number in schizophrenia. Asian Journal of Psychiatry, 53, 102193. https://doi.org/10.1016/j.ajp.2020.102193

Shoshan-Barmatz, V., Nahon-Crystal, E., Shteinfer-Kuzmine, A., & Gupta, R. (2018). VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research, 131, 87–101. https://doi.org/10.1016/j.phrs.2018.03.010

Sigitova, E., Fišar, Z., Hroudová, J., Cikánková, T., & Raboch, J. (2017). Biological hypotheses and biomarkers of bipolar disorder. Psychiatry and Clinical Neurosciences, 71(2), 77–103. https://doi.org/10.1111/pcn.12476

Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24(8), 1583. https://doi.org/10.3390/molecules24081583

Spohr, L., Soares, M., Bona, N. P., Pedra, N. S., Barschak, A. G., Alvariz, R. M., Vizzotto, M., Lencina, C. L., Stefanello, F. M., & Spanevello, R. M. (2022). Effect of blueberry extract on energetic metabolism, levels of brain-derived neurotrophic factor, and Ca2+-ATPase activity in the hippocampus and cerebral cortex of rats submitted to ketamine-induced mania-like behavior. Metabolic Brain Disease, 37(3), 835–847. https://doi.org/10.1007/s11011-022-00904-x

Srivastava, A., Dada, O., Qian, J., Al-Chalabi, N., Fatemi, A. B., Gerretsen, P., Graff, A., & De Luca, V. (2021). Epigenetics of Schizophrenia. Psychiatry Research, 305, 114218. https://doi.org/10.1016/j.psychres.2021.114218

Swerdlow R. H. (2018). Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. Journal of Alzheimer's Disease, 62(3), 1403–1416. https://doi.org/10.3233/JAD-170585

Toriumi, K., Berto, S., Koike, S., Usui, N., Dan, T., Suzuki, K., Miyashita, M., Horiuchi, Y., Yoshikawa, A., Asakura, M., Nagahama, K., Lin, H. C., Sugaya, Y., Watanabe, T., Kano, M., Ogasawara, Y., Miyata, T., Itokawa, M., Konopka, G., & Arai, M. (2021). Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biology, 45, 102057. https://doi.org/10.1016/j.redox.2021.102057

Valiente-Pallejà, A., Torrell, H., Alonso, Y., Vilella, E., Muntané, G., & Martorell, L. (2020). Increased blood lactate levels during exercise and mitochondrial DNA alterations converge on mitochondrial dysfunction in schizophrenia. Schizophrenia Research, 220, 61–68. https://doi.org/10.1016/j.schres.2020.03.070

Wu, Y., Chen, M., & Jiang, J. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35–45. https://doi.org/10.1016/j.mito.2019.07.003

Xie, X., Shu, R., Yu, C., Fu, Z., & Li, Z. (2022). Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging and Disease, 13(1), 157–174. https://doi.org/10.14336/AD.2021.0729

Downloads

Published

2022-09-26

How to Cite

Sokolik, O. P. and Prozorova, G. O. (2022) “Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system”, Neuroscience Research Notes, 5(3), p. 151. doi: 10.31117/neuroscirn.v5i3.151.