Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system


  • Olena Petrivna Sokolik Department of Pharmacology and Pharmacognosy, Odessa National Medical University, Odessa, Ukraine.
  • Galina Olexandrivna Prozorova Department of Pharmacy, Pylyp Orlyk International Classical University, Mykolayiv, Ukraine.



Mitochondrial dysfunction, central nervous system, bipolar affective disorder, major depression, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease


One of the promising therapy areas for many diseases of the central nervous system is the search for agents of selective effect on mitochondria. Both the mitochondria themselves and the mitochondrial metabolism of the transformed cell of the central nervous system and activation of energy metabolism by reprogrammed mitochondria give impetus for the development of mitochondrial pharmacology to use the special properties of transformed cells mitochondria as targets for neuroprotective and neuroplastic effects. In this review, we analyse literary sources of domestic and foreign authors about the influence of mitochondrial dysfunction on various links in the pathogenesis of central nervous system diseases. Based on currently available data, scientists divided all signs of mitochondrial dysfunction in schizophrenia into three groups: morphological disorders of mitochondria, signs of a violation of the oxidative phosphorylation system and dysregulation of genes responsible for mitochondrial proteins. The therapeutic effect of drugs for central nervous system disorders should focus on reducing the accumulation of metabolic products and tissue breakdown, restoring mitochondrial functions and synaptic plasticity, and protecting mitochondria from toxic effects, thereby alleviating cognitive disorders with a neuroprotective effect.


Amiri, S., Dizaji, R., Momeny, M., Gauvin, E., & Hosseini, M. J. (2021). Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology, 187, 108503.

Ben-Shachar D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophrenia Research, 187, 3–10.

Brown, P. J., Brennan, N., Ciarleglio, A., Chen, C., Garcia, C. M., Gomez, S., Roose, S. P., Rutherford, B. R., Simonsick, E. M., Spencer, R. G., & Ferrucci, L. (2019). Declining Skeletal Muscle Mitochondrial Function Associated With Increased Risk of Depression in Later Life. American Journal of Geriatric Psychiatry, 27(9), 963–971.

Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., Jeon, S., Santos, D. P., Blanz, J., Obermaier, C. D., Strojny, C., Savas, J. N., Kiskinis, E., Zhuang, X., Krüger, R., Surmeier, D. J., & Krainc, D. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 357(6357), 1255–1261.

Creed, R. B., Roberts, R. C., Farmer, C. B., McMahon, L. L., & Goldberg, M. S. (2021). Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiology of Disease, 150, 105246.

de la Fuente, C., Burke, D. G., Eaton, S., & Heales, S. (2017). Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochemistry International, 109, 94–100.

E Silva, L., Brito, M. D., Yuzawa, J., & Rosenstock, T. R. (2019). Mitochondrial Dysfunction and Changes in High-Energy Compounds in Different Cellular Models Associated to Hypoxia: Implication to Schizophrenia. Scientific Reports, 9(1), 18049.

Fernandez, A., Meechan, D. W., Karpinski, B. A., Paronett, E. M., Bryan, C. A., Rutz, H. L., Radin, E. A., Lubin, N., Bonner, E. R., Popratiloff, A., Rothblat, L. A., Maynard, T. M., & LaMantia, A. S. (2019). Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron, 102(6), 1127–1142.e3.

Frye R. E. (2020). Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Seminars in Pediatric Neurology, 35, 100829.

Gevezova, M., Sarafian, V., Anderson, G., & Maes, M. (2020). Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & Neurological Disorders Drug Targets, 19(5), 320–333.

Giménez-Palomo, A., Dodd, S., Anmella, G., Carvalho, A. F., Scaini, G., Quevedo, J., Pacchiarotti, I., Vieta, E., & Berk, M. (2021). The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Frontiers in Psychiatry, 12, 546801.

Glausier, J. R., Enwright, J. F., 3rd, & Lewis, D. A. (2020). Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 177(12), 1140–1150.

Gonçalves, V. F., Cappi, C., Hagen, C. M., Sequeira, A., Vawter, M. P., Derkach, A., Zai, C. C., Hedley, P. L., Bybjerg-Grauholm, J., Pouget, J. G., Cuperfain, A. B., Sullivan, P. F., Christiansen, M., Kennedy, J. L., & Sun, L. (2018). A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia. Biological Psychiatry, 83(9), 780–789.

González-Rodríguez, P., Zampese, E., Stout, K. A., Guzman, J. N., Ilijic, E., Yang, B., Tkatch, T., Stavarache, M. A., Wokosin, D. L., Gao, L., Kaplitt, M. G., López-Barneo, J., Schumacker, P. T., & Surmeier, D. J. (2021). Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 599(7886), 650–656.

Harland, M., Torres, S., Liu, J., & Wang, X. (2020). Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. Journal of Neuroscience, 40(8), 1756–1765.

Harrison, P. J., Geddes, J. R., & Tunbridge, E. M. (2018). The Emerging Neurobiology of Bipolar Disorder. Trends in Neurosciences, 41(1), 18–30.

Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery, and Psychiatry, 91(8), 795–808.

Kanellopoulos, A. K., Mariano, V., Spinazzi, M., Woo, Y. J., McLean, C., Pech, U., Li, K. W., Armstrong, J. D., Giangrande, A., Callaerts, P., Smit, A. B., Abrahams, B. S., Fiala, A., Achsel, T., & Bagni, C. (2020). Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell, 180(6), 1178–1197.e20.

Kato T. (2017). Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophrenia Research, 187, 62–66.

Kato T. (2019). Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and Clinical Neurosciences, 73(9), 526–540.

Kato, T. M., Kubota-Sakashita, M., Fujimori-Tonou, N., Saitow, F., Fuke, S., Masuda, A., Itohara, S., Suzuki, H., & Kato, T. (2018). Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Molecular Psychiatry, 23(10), 2039–2049.

Kim J. H. (2018). Genetics of Alzheimer's Disease. Dementia and Neurocognitive Disorders, 17(4), 131–136.

Kim, Y., Vadodaria, K. C., Lenkei, Z., Kato, T., Gage, F. H., Marchetto, M. C., & Santos, R. (2019). Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxidants & Redox Ssignaling, 31(4), 275–317.

Koklesova, L., Samec, M., Liskova, A., Zhai, K., Büsselberg, D., Giordano, F. A., Kubatka, P., & Golunitschaja, O. (2021). Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. The EPMA Journal, 12(1), 27–40.

Macdonald, R., Barnes, K., Hastings, C., & Mortiboys, H. (2018). Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochemical Society Transactions, 46(4), 891–909.

Malpartida, A. B., Williamson, M., Narendra, D. P., Wade-Martins, R., & Ryan, B. J. (2021). Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 46(4), 329–343.

McAvoy, K., & Kawamata, H. (2019). Glial mitochondrial function and dysfunction in health and neurodegeneration. Molecular and Cellular Neurosciences, 101, 103417.

Moya, G. E., Rivera, P. D., & Dittenhafer-Reed, K. E. (2021). Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. International Journal of Molecular Sciences, 22(13), 7030.

Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A., & Krainc, D. (2019). Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends in Neurosciences, 42(2), 140–149.

Ni, P., & Chung, S. (2020). Mitochondrial Dysfunction in Schizophrenia. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 42(6), e1900202.

Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Current Neurology and Neuroscience Reports, 18(5), 21.

Pereira, C., Chavarria, V., Vian, J., Ashton, M. M., Berk, M., Marx, W., & Dean, O. M. (2018). Mitochondrial Agents for Bipolar Disorder. International Journal of Neuropsychopharmacology, 21(6), 550–569.

Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507.

Rani, L., & Mondal, A. C. (2020). Emerging concepts of mitochondrial dysfunction in Parkinson's disease progression: Pathogenic and therapeutic implications. Mitochondrion, 50, 25–34.

Roberts R. C. (2021). Mitochondrial dysfunction in schizophrenia: With a focus on post-mortem studies. Mitochondrion, 56, 91–101.

Rocha, E. M., De Miranda, B., & Sanders, L. H. (2018). Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiology of Disease, 109(Pt B), 249–257.

Rose, S., Niyazov, D. M., Rossignol, D. A., Goldenthal, M., Kahler, S. G., & Frye, R. E. (2018). Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Molecular Diagnosis & Therapy, 22(5), 571–593.

Saxena, A., Scaini, G., Bavaresco, D. V., Leite, C., Valvassori, S. S., Carvalho, A. F., & Quevedo, J. (2017). Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. Molecular Neuropsychiatry, 3(2), 108–124.

Scaini, G., Andrews, T., Lima, C., Benevenuto, D., Streck, E. L., & Quevedo, J. (2021). Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 57, 23–36.

Schulmann, A., Ryu, E., Goncalves, V., Rollins, B., Christiansen, M., Frye, M. A., Biernacka, J., & Vawter, M. P. (2019). Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Molecular Neuropsychiatry, 5(1), 13–27.

Shivakumar, V., Rajasekaran, A., Subbanna, M., Kalmady, S. V., Venugopal, D., Agrawal, R., Amaresha, A. C., Agarwal, S. M., Joseph, B., Narayanaswamy, J. C., Debnath, M., Venkatasubramanian, G., & Gangadhar, B. N. (2020). Leukocyte mitochondrial DNA copy number in schizophrenia. Asian Journal of Psychiatry, 53, 102193.

Shoshan-Barmatz, V., Nahon-Crystal, E., Shteinfer-Kuzmine, A., & Gupta, R. (2018). VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research, 131, 87–101.

Sigitova, E., Fišar, Z., Hroudová, J., Cikánková, T., & Raboch, J. (2017). Biological hypotheses and biomarkers of bipolar disorder. Psychiatry and Clinical Neurosciences, 71(2), 77–103.

Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24(8), 1583.

Spohr, L., Soares, M., Bona, N. P., Pedra, N. S., Barschak, A. G., Alvariz, R. M., Vizzotto, M., Lencina, C. L., Stefanello, F. M., & Spanevello, R. M. (2022). Effect of blueberry extract on energetic metabolism, levels of brain-derived neurotrophic factor, and Ca2+-ATPase activity in the hippocampus and cerebral cortex of rats submitted to ketamine-induced mania-like behavior. Metabolic Brain Disease, 37(3), 835–847.

Srivastava, A., Dada, O., Qian, J., Al-Chalabi, N., Fatemi, A. B., Gerretsen, P., Graff, A., & De Luca, V. (2021). Epigenetics of Schizophrenia. Psychiatry Research, 305, 114218.

Swerdlow R. H. (2018). Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. Journal of Alzheimer's Disease, 62(3), 1403–1416.

Toriumi, K., Berto, S., Koike, S., Usui, N., Dan, T., Suzuki, K., Miyashita, M., Horiuchi, Y., Yoshikawa, A., Asakura, M., Nagahama, K., Lin, H. C., Sugaya, Y., Watanabe, T., Kano, M., Ogasawara, Y., Miyata, T., Itokawa, M., Konopka, G., & Arai, M. (2021). Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biology, 45, 102057.

Valiente-Pallejà, A., Torrell, H., Alonso, Y., Vilella, E., Muntané, G., & Martorell, L. (2020). Increased blood lactate levels during exercise and mitochondrial DNA alterations converge on mitochondrial dysfunction in schizophrenia. Schizophrenia Research, 220, 61–68.

Wu, Y., Chen, M., & Jiang, J. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35–45.

Xie, X., Shu, R., Yu, C., Fu, Z., & Li, Z. (2022). Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging and Disease, 13(1), 157–174.




How to Cite

Sokolik, O. P. and Prozorova, G. O. (2022) “Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system”, Neuroscience Research Notes, 5(3), p. 151. doi: 10.31117/neuroscirn.v5i3.151.