Analysis of significance of mitochondrial dysfunction in the pathogenesis of diseases of the central nervous system
DOI:
https://doi.org/10.31117/neuroscirn.v5i3.151Keywords:
Mitochondrial dysfunction, central nervous system, bipolar affective disorder, major depression, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's diseaseAbstract
One of the promising therapy areas for many diseases of the central nervous system is the search for agents of selective effect on mitochondria. Both the mitochondria themselves and the mitochondrial metabolism of the transformed cell of the central nervous system and activation of energy metabolism by reprogrammed mitochondria give impetus for the development of mitochondrial pharmacology to use the special properties of transformed cells mitochondria as targets for neuroprotective and neuroplastic effects. In this review, we analyse literary sources of domestic and foreign authors about the influence of mitochondrial dysfunction on various links in the pathogenesis of central nervous system diseases. Based on currently available data, scientists divided all signs of mitochondrial dysfunction in schizophrenia into three groups: morphological disorders of mitochondria, signs of a violation of the oxidative phosphorylation system and dysregulation of genes responsible for mitochondrial proteins. The therapeutic effect of drugs for central nervous system disorders should focus on reducing the accumulation of metabolic products and tissue breakdown, restoring mitochondrial functions and synaptic plasticity, and protecting mitochondria from toxic effects, thereby alleviating cognitive disorders with a neuroprotective effect.
References
Amiri, S., Dizaji, R., Momeny, M., Gauvin, E., & Hosseini, M. J. (2021). Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology, 187, 108503. https://doi.org/10.1016/j.neuropharm.2021.108503
Ben-Shachar D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophrenia Research, 187, 3–10. https://doi.org/10.1016/j.schres.2016.10.022
Brown, P. J., Brennan, N., Ciarleglio, A., Chen, C., Garcia, C. M., Gomez, S., Roose, S. P., Rutherford, B. R., Simonsick, E. M., Spencer, R. G., & Ferrucci, L. (2019). Declining Skeletal Muscle Mitochondrial Function Associated With Increased Risk of Depression in Later Life. American Journal of Geriatric Psychiatry, 27(9), 963–971. https://doi.org/10.1016/j.jagp.2019.03.022
Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., Jeon, S., Santos, D. P., Blanz, J., Obermaier, C. D., Strojny, C., Savas, J. N., Kiskinis, E., Zhuang, X., Krüger, R., Surmeier, D. J., & Krainc, D. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 357(6357), 1255–1261. https://doi.org/10.1126/science.aam9080
Creed, R. B., Roberts, R. C., Farmer, C. B., McMahon, L. L., & Goldberg, M. S. (2021). Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiology of Disease, 150, 105246. https://doi.org/10.1016/j.nbd.2020.105246
de la Fuente, C., Burke, D. G., Eaton, S., & Heales, S. (2017). Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochemistry International, 109, 94–100. https://doi.org/10.1016/j.neuint.2017.02.013
E Silva, L., Brito, M. D., Yuzawa, J., & Rosenstock, T. R. (2019). Mitochondrial Dysfunction and Changes in High-Energy Compounds in Different Cellular Models Associated to Hypoxia: Implication to Schizophrenia. Scientific Reports, 9(1), 18049. https://doi.org/10.1038/s41598-019-53605-4
Fernandez, A., Meechan, D. W., Karpinski, B. A., Paronett, E. M., Bryan, C. A., Rutz, H. L., Radin, E. A., Lubin, N., Bonner, E. R., Popratiloff, A., Rothblat, L. A., Maynard, T. M., & LaMantia, A. S. (2019). Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron, 102(6), 1127–1142.e3. https://doi.org/10.1016/j.neuron.2019.04.013
Frye R. E. (2020). Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Seminars in Pediatric Neurology, 35, 100829. https://doi.org/10.1016/j.spen.2020.100829
Gevezova, M., Sarafian, V., Anderson, G., & Maes, M. (2020). Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & Neurological Disorders Drug Targets, 19(5), 320–333. https://doi.org/10.2174/1871527319666200628015039
Giménez-Palomo, A., Dodd, S., Anmella, G., Carvalho, A. F., Scaini, G., Quevedo, J., Pacchiarotti, I., Vieta, E., & Berk, M. (2021). The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Frontiers in Psychiatry, 12, 546801. https://doi.org/10.3389/fpsyt.2021.546801
Glausier, J. R., Enwright, J. F., 3rd, & Lewis, D. A. (2020). Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 177(12), 1140–1150. https://doi.org/10.1176/appi.ajp.2020.19111210
Gonçalves, V. F., Cappi, C., Hagen, C. M., Sequeira, A., Vawter, M. P., Derkach, A., Zai, C. C., Hedley, P. L., Bybjerg-Grauholm, J., Pouget, J. G., Cuperfain, A. B., Sullivan, P. F., Christiansen, M., Kennedy, J. L., & Sun, L. (2018). A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia. Biological Psychiatry, 83(9), 780–789. https://doi.org/10.1016/j.biopsych.2018.02.1175
González-Rodríguez, P., Zampese, E., Stout, K. A., Guzman, J. N., Ilijic, E., Yang, B., Tkatch, T., Stavarache, M. A., Wokosin, D. L., Gao, L., Kaplitt, M. G., López-Barneo, J., Schumacker, P. T., & Surmeier, D. J. (2021). Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 599(7886), 650–656. https://doi.org/10.1038/s41586-021-04059-0
Harland, M., Torres, S., Liu, J., & Wang, X. (2020). Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. Journal of Neuroscience, 40(8), 1756–1765. https://doi.org/10.1523/JNEUROSCI.2324-19.2020
Harrison, P. J., Geddes, J. R., & Tunbridge, E. M. (2018). The Emerging Neurobiology of Bipolar Disorder. Trends in Neurosciences, 41(1), 18–30. https://doi.org/10.1016/j.tins.2017.10.006
Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery, and Psychiatry, 91(8), 795–808. https://doi.org/10.1136/jnnp-2019-322338
Kanellopoulos, A. K., Mariano, V., Spinazzi, M., Woo, Y. J., McLean, C., Pech, U., Li, K. W., Armstrong, J. D., Giangrande, A., Callaerts, P., Smit, A. B., Abrahams, B. S., Fiala, A., Achsel, T., & Bagni, C. (2020). Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell, 180(6), 1178–1197.e20. https://doi.org/10.1016/j.cell.2020.02.044
Kato T. (2017). Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophrenia Research, 187, 62–66. https://doi.org/10.1016/j.schres.2016.10.037
Kato T. (2019). Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and Clinical Neurosciences, 73(9), 526–540. https://doi.org/10.1111/pcn.12852
Kato, T. M., Kubota-Sakashita, M., Fujimori-Tonou, N., Saitow, F., Fuke, S., Masuda, A., Itohara, S., Suzuki, H., & Kato, T. (2018). Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Molecular Psychiatry, 23(10), 2039–2049. https://doi.org/10.1038/s41380-018-0074-9
Kim J. H. (2018). Genetics of Alzheimer's Disease. Dementia and Neurocognitive Disorders, 17(4), 131–136. https://doi.org/10.12779/dnd.2018.17.4.131
Kim, Y., Vadodaria, K. C., Lenkei, Z., Kato, T., Gage, F. H., Marchetto, M. C., & Santos, R. (2019). Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxidants & Redox Ssignaling, 31(4), 275–317. https://doi.org/10.1089/ars.2018.7606
Koklesova, L., Samec, M., Liskova, A., Zhai, K., Büsselberg, D., Giordano, F. A., Kubatka, P., & Golunitschaja, O. (2021). Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. The EPMA Journal, 12(1), 27–40. https://doi.org/10.1007/s13167-021-00237-2
Macdonald, R., Barnes, K., Hastings, C., & Mortiboys, H. (2018). Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochemical Society Transactions, 46(4), 891–909. https://doi.org/10.1042/BST20170501
Malpartida, A. B., Williamson, M., Narendra, D. P., Wade-Martins, R., & Ryan, B. J. (2021). Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 46(4), 329–343. https://doi.org/10.1016/j.tibs.2020.11.007
McAvoy, K., & Kawamata, H. (2019). Glial mitochondrial function and dysfunction in health and neurodegeneration. Molecular and Cellular Neurosciences, 101, 103417. https://doi.org/10.1016/j.mcn.2019.103417
Moya, G. E., Rivera, P. D., & Dittenhafer-Reed, K. E. (2021). Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. International Journal of Molecular Sciences, 22(13), 7030. https://doi.org/10.3390/ijms22137030
Nguyen, M., Wong, Y. C., Ysselstein, D., Severino, A., & Krainc, D. (2019). Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends in Neurosciences, 42(2), 140–149. https://doi.org/10.1016/j.tins.2018.11.001
Ni, P., & Chung, S. (2020). Mitochondrial Dysfunction in Schizophrenia. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 42(6), e1900202. https://doi.org/10.1002/bies.201900202
Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Current Neurology and Neuroscience Reports, 18(5), 21. https://doi.org/10.1007/s11910-018-0829-3
Pereira, C., Chavarria, V., Vian, J., Ashton, M. M., Berk, M., Marx, W., & Dean, O. M. (2018). Mitochondrial Agents for Bipolar Disorder. International Journal of Neuropsychopharmacology, 21(6), 550–569. https://doi.org/10.1093/ijnp/pyy018
Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507. https://doi.org/10.1111/bph.14585
Rani, L., & Mondal, A. C. (2020). Emerging concepts of mitochondrial dysfunction in Parkinson's disease progression: Pathogenic and therapeutic implications. Mitochondrion, 50, 25–34. https://doi.org/10.1016/j.mito.2019.09.010
Roberts R. C. (2021). Mitochondrial dysfunction in schizophrenia: With a focus on post-mortem studies. Mitochondrion, 56, 91–101. https://doi.org/10.1016/j.mito.2020.11.009
Rocha, E. M., De Miranda, B., & Sanders, L. H. (2018). Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiology of Disease, 109(Pt B), 249–257. https://doi.org/10.1016/j.nbd.2017.04.004
Rose, S., Niyazov, D. M., Rossignol, D. A., Goldenthal, M., Kahler, S. G., & Frye, R. E. (2018). Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Molecular Diagnosis & Therapy, 22(5), 571–593. https://doi.org/10.1007/s40291-018-0352-x
Saxena, A., Scaini, G., Bavaresco, D. V., Leite, C., Valvassori, S. S., Carvalho, A. F., & Quevedo, J. (2017). Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. Molecular Neuropsychiatry, 3(2), 108–124. https://doi.org/10.1159/000480349
Scaini, G., Andrews, T., Lima, C., Benevenuto, D., Streck, E. L., & Quevedo, J. (2021). Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 57, 23–36. https://doi.org/10.1016/j.mito.2020.12.002
Schulmann, A., Ryu, E., Goncalves, V., Rollins, B., Christiansen, M., Frye, M. A., Biernacka, J., & Vawter, M. P. (2019). Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Molecular Neuropsychiatry, 5(1), 13–27. https://doi.org/10.1159/000495658
Shivakumar, V., Rajasekaran, A., Subbanna, M., Kalmady, S. V., Venugopal, D., Agrawal, R., Amaresha, A. C., Agarwal, S. M., Joseph, B., Narayanaswamy, J. C., Debnath, M., Venkatasubramanian, G., & Gangadhar, B. N. (2020). Leukocyte mitochondrial DNA copy number in schizophrenia. Asian Journal of Psychiatry, 53, 102193. https://doi.org/10.1016/j.ajp.2020.102193
Shoshan-Barmatz, V., Nahon-Crystal, E., Shteinfer-Kuzmine, A., & Gupta, R. (2018). VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacological Research, 131, 87–101. https://doi.org/10.1016/j.phrs.2018.03.010
Sigitova, E., Fišar, Z., Hroudová, J., Cikánková, T., & Raboch, J. (2017). Biological hypotheses and biomarkers of bipolar disorder. Psychiatry and Clinical Neurosciences, 71(2), 77–103. https://doi.org/10.1111/pcn.12476
Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24(8), 1583. https://doi.org/10.3390/molecules24081583
Spohr, L., Soares, M., Bona, N. P., Pedra, N. S., Barschak, A. G., Alvariz, R. M., Vizzotto, M., Lencina, C. L., Stefanello, F. M., & Spanevello, R. M. (2022). Effect of blueberry extract on energetic metabolism, levels of brain-derived neurotrophic factor, and Ca2+-ATPase activity in the hippocampus and cerebral cortex of rats submitted to ketamine-induced mania-like behavior. Metabolic Brain Disease, 37(3), 835–847. https://doi.org/10.1007/s11011-022-00904-x
Srivastava, A., Dada, O., Qian, J., Al-Chalabi, N., Fatemi, A. B., Gerretsen, P., Graff, A., & De Luca, V. (2021). Epigenetics of Schizophrenia. Psychiatry Research, 305, 114218. https://doi.org/10.1016/j.psychres.2021.114218
Swerdlow R. H. (2018). Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. Journal of Alzheimer's Disease, 62(3), 1403–1416. https://doi.org/10.3233/JAD-170585
Toriumi, K., Berto, S., Koike, S., Usui, N., Dan, T., Suzuki, K., Miyashita, M., Horiuchi, Y., Yoshikawa, A., Asakura, M., Nagahama, K., Lin, H. C., Sugaya, Y., Watanabe, T., Kano, M., Ogasawara, Y., Miyata, T., Itokawa, M., Konopka, G., & Arai, M. (2021). Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biology, 45, 102057. https://doi.org/10.1016/j.redox.2021.102057
Valiente-Pallejà, A., Torrell, H., Alonso, Y., Vilella, E., Muntané, G., & Martorell, L. (2020). Increased blood lactate levels during exercise and mitochondrial DNA alterations converge on mitochondrial dysfunction in schizophrenia. Schizophrenia Research, 220, 61–68. https://doi.org/10.1016/j.schres.2020.03.070
Wu, Y., Chen, M., & Jiang, J. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35–45. https://doi.org/10.1016/j.mito.2019.07.003
Xie, X., Shu, R., Yu, C., Fu, Z., & Li, Z. (2022). Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging and Disease, 13(1), 157–174. https://doi.org/10.14336/AD.2021.0729
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Olena Petrivna Sokolik, Galina Olexandrivna Prozorova

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The observations and associated materials published or posted by NeurosciRN are licensed by the authors for use and distribution in accord with the Creative Commons Attribution license CC BY-NC 4.0 international, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.