Latest advances in cell-death pathway approaches in treating high-risk neuroblastoma

Authors

  • Adeliya Temirbek Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia. https://orcid.org/0000-0002-2553-2981
  • Sue Mian Then Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia.

DOI:

https://doi.org/10.31117/neuroscirn.v5i3.147

Keywords:

High-risk neuroblastoma, treatment strategies, apoptosis, autophagy, immunotherapy

Abstract

Neuroblastoma (NB) is one of childhood's most common malignant tumours worldwide. Upon diagnosis, NB is categorized according to staging and risk, with treatment according to different risk categories. High-risk NB is treated with intensive chemotherapy, surgery, radiation therapy, bone marrow / hematopoietic stem cell transplantation, differentiation treatment of isotretinoin and antibody therapy that is usually administered with the cytokines GM-CSF and IL-2. To date, the genetic profile of NB is still being investigated. The most established gene associated with NB is the MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) amplification that contributes to the risk stratification of the disease. MYCN gene is an important foetal oncogene involved in cell proliferation for organ and tissue growth. Unfortunately, despite significant advances in the treatment of NB in recent decades, the prognosis for high-risk patients remains unfavourable since the overall 5-year survival rate, according to statistical data, does not exceed 40%. The use of cell technologies in paediatric oncology and haematology occupies a significant place and continues to improve. Since one of the leading causes of tumour development is an imbalance between cell death and cell survival, this paper aims to discuss treatment strategies to eliminate tumour cells using cell death pathways, including inducing apoptosis, necroptosis, autophagy, bioenergetics pathways, and immunotherapy.  In conclusion, there is a need for a well-studied genetic profile of NB, which will allow the identification of new biomarkers, thereby contributing to the development of new therapeutic strategies. At the point of this review, immunotherapy seems to be the most promising treatment for high-risk NB as it has been highly effective in other kinds of cancer.

References

Abel, F., Dalevi, D., Nethander, M., Jornsten, R., De Preter, K., Vermeulen, J., Stallings, R., Kogner, P., Maris, J., & Nilsson, S. (2011). A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell International, 11, 9. https://doi.org/10.1186/1475-2867-11-9

Arnaout, A., Robertson, S. J., Pond, G. R., Lee, H., Jeong, A., Ianni, L., Kroeger, L., Hilton, J., Coupland, S., Gottlieb, C., Hurley, B., McCarthy, A., & Clemons, M. (2019). A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Research and Treatment, 178(2), 327-335. https://doi.org/10.1007/s10549-019-05381-y

Aveic, S., Pantile, M., Seydel, A., Esposito, M. R., Zanon, C., Li, G., & Tonini, G. P. (2016). Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells. Oncotarget, 7(5), 5646-5663. https://doi.org/10.18632/oncotarget.6778

Bao, L., Chen, S. J., Conrad, K., Keefer, K., Abraham, T., Lee, J. P., Wang, J., Zhang, X. Q., Hirschler-Laszkiewicz, I., Wang, H. G., Dovat, S., Gans, B., Madesh, M., Cheung, J. Y., & Miller, B. A. (2016). Depletion of the Human Ion Channel TRPM2 in Neuroblastoma Demonstrates Its Key Role in Cell Survival through Modulation of Mitochondrial Reactive Oxygen Species and Bioenergetics. Journal of Biological Chemistry, 291(47), 24449-24464. https://doi.org/10.1074/jbc.M116.747147

Bate-Eya, L. T., den Hartog, I. J., van der Ploeg, I., Schild, L., Koster, J., Santo, E. E., Westerhout, E. M., Versteeg, R., Caron, H. N., Molenaar, J. J., & Dolman, M. E. (2016). High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition. Oncotarget, 7(19), 27946-27958. https://doi.org/10.18632/oncotarget.8547

Baum, R. P., Singh, A., Schuchardt, C., Kulkarni, H. R., Klette, I., Wiessalla, S., Osterkamp, F., Reineke, U., & Smerling, C. (2018). 177Lu-3BP-227 for Neurotensin Receptor 1–Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results. Journal of Nuclear Medicine, 59(5), 809. https://doi.org/10.2967/jnumed.117.193847

Bean, J. F., Qiu, Y. Y., Yu, S., Clark, S., Chu, F., & Madonna, M. B. (2014). Glycolysis inhibition and its effect in doxorubicin resistance in neuroblastoma. Journal of Pediatric Surgery, 49(6), 981-984; discussion 984. https://doi.org/10.1016/j.jpedsurg.2014.01.037

Belounis, A., Nyalendo, C., Le Gall, R., Imbriglio, T. V., Mahma, M., Teira, P., Beaunoyer, M., Cournoyer, S., Haddad, E., Vassal, G., & Sartelet, H. (2016). Autophagy is associated with chemoresistance in neuroblastoma. BMC Cancer, 16(1), 891. https://doi.org/10.1186/s12885-016-2906-9

Bierbrauer, A., Jacob, M., Vogler, M., & Fulda, S. (2020). A direct comparison of selective BH3-mimetics reveals BCL-X(L), BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. British Journal of Cancer, 122(10), 1544-1551. https://doi.org/10.1038/s41416-020-0795-9

Castle, V. P., Heidelberger, K. P., Bromberg, J., Ou, X., Dole, M., & Nunez, G. (1993). Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. American Journal of Pathology, 143(6), 1543-1550. https://www.ncbi.nlm.nih.gov/pubmed/8256847

Cheever, M. A., Allison, J. P., Ferris, A. S., Finn, O. J., Hastings, B. M., Hecht, T. T., Mellman, I., Prindiville, S. A., Viner, J. L., Weiner, L. M., & Matrisian, L. M. (2009). The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clinical Cancer Research, 15(17), 5323-5337. https://doi.org/10.1158/1078-0432.Ccr-09-0737

Chen, L., Malcolm, A. J., Wood, K. M., Cole, M., Variend, S., Cullinane, C., Pearson, A. D., Lunec, J., & Tweddle, D. A. (2007). p53 is nuclear and functional in both undifferentiated and differentiated neuroblastoma. Cell Cycle, 6(21), 2685-2696. https://doi.org/10.4161/cc.6.21.4853

Chen, L., Rousseau, R. F., Middleton, S. A., Nichols, G. L., Newell, D. R., Lunec, J., & Tweddle, D. A. (2015). Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma. Oncotarget, 6(12), 10207-10221. https://doi.org/10.18632/oncotarget.3504

Chen, S. J., Hoffman, N. E., Shanmughapriya, S., Bao, L., Keefer, K., Conrad, K., Merali, S., Takahashi, Y., Abraham, T., Hirschler-Laszkiewicz, I., Wang, J., Zhang, X. Q., Song, J., Barrero, C., Shi, Y., Kawasawa, Y. I., Bayerl, M., Sun, T., Barbour, M., . . . Miller, B. A. (2014). A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2α. Journal of Biological Chemistry, 289(52), 36284-36302. https://doi.org/10.1074/jbc.M114.620922

Chen, Y., Sun, C., Landoni, E., Metelitsa, L., Dotti, G., & Savoldo, B. (2019). Eradication of Neuroblastoma by T Cells Redirected with an Optimized GD2-Specific Chimeric Antigen Receptor and Interleukin-15. Clinical Cancer Research, 25(9), 2915-2924. https://doi.org/10.1158/1078-0432.Ccr-18-1811

Cheung, N. K., Cheung, I. Y., Kushner, B. H., Ostrovnaya, I., Chamberlain, E., Kramer, K., & Modak, S. (2012). Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. Journal of Clinical Oncolology, 30(26), 3264-3270. https://doi.org/10.1200/JCO.2011.41.3807

Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., & Chan, F. K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137(6), 1112-1123. https://doi.org/10.1016/j.cell.2009.05.037

Chu, Q. S., Sangha, R., Spratlin, J., Vos, L. J., Mackey, J. R., McEwan, A. J., Venner, P., & Michelakis, E. D. (2015). A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Investigational New Drugs, 33(3), 603-610. https://doi.org/10.1007/s10637-015-0221-y

Chuang, J. H., Chou, M. H., Tai, M. H., Lin, T. K., Liou, C. W., Chen, T., Hsu, W. M., & Wang, P. W. (2013). 2-Deoxyglucose treatment complements the cisplatin- or BH3-only mimetic-induced suppression of neuroblastoma cell growth. The International Journal of Biochemistry & Cell Biology, 45(5), 944-951. https://doi.org/10.1016/j.biocel.2013.01.019

Corallo, D., Pastorino, F., Pantile, M., Mariotto, E., Caicci, F., Viola, G., Ponzoni, M., Tonini, G. P., & Aveic, S. (2020). Autophagic flux inhibition enhances cytotoxicity of the receptor tyrosine kinase inhibitor ponatinib. Journal of Experimental & Clinical Cancer Research, 39(1), 195. https://doi.org/10.1186/s13046-020-01692-x

Corvi, R., Savelyeva, L., Breit, S., Wenzel, A., Handgretinger, R., Barak, J., Oren, M., Amler, L., & Schwab, M. (1995). Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene, 10(6), 1081-1086. https://www.ncbi.nlm.nih.gov/pubmed/7700632

Cory, S., & Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2(9), 647-656. https://doi.org/10.1038/nrc883

De Brouwer, S., De Preter, K., Kumps, C., Zabrocki, P., Porcu, M., Westerhout, E. M., Lakeman, A., Vandesompele, J., Hoebeeck, J., Van Maerken, T., De Paepe, A., Laureys, G., Schulte, J. H., Schramm, A., Van Den Broecke, C., Vermeulen, J., Van Roy, N., Beiske, K., Renard, M., . . . Speleman, F. (2010). Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clinical Cancer Research, 16(17), 4353-4362. https://doi.org/10.1158/1078-0432.Ccr-09-2660

Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A., & Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1(2), 112-119. https://doi.org/10.1038/nchembio711

Deveraux, Q. L., & Reed, J. C. (1999). IAP family proteins--suppressors of apoptosis. Genes & Development, 13(3), 239-252. https://doi.org/10.1101/gad.13.3.239

Dhuriya, Y. K., & Sharma, D. (2018). Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation, 15(1), 199. https://doi.org/10.1186/s12974-018-1235-0

Di Giannatale, A., Dias-Gastellier, N., Devos, A., Mc Hugh, K., Boubaker, A., Courbon, F., Verschuur, A., Ducassoul, S., Malekzadeh, K., Casanova, M., Amoroso, L., Chastagner, P., Zwaan, C. M., Munzer, C., Aerts, I., Landman-Parker, J., Riccardi, R., Le Deley, M.-C., Geoerger, B., & Rubie, H. (2014). Phase II study of temozolomide in combination with topotecan (TOTEM) in relapsed or refractory neuroblastoma: A European Innovative Therapies for Children with Cancer-SIOP-European Neuroblastoma study. European Journal of Cancer, 50(1), 170-177. https://doi.org/https://doi.org/10.1016/j.ejca.2013.08.012

Dole, M., Nunez, G., Merchant, A. K., Maybaum, J., Rode, C. K., Bloch, C. A., & Castle, V. P. (1994). Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Research, 54(12), 3253-3259. https://www.ncbi.nlm.nih.gov/pubmed/8205548

Dungwa, J. V., Hunt, L. P., & Ramani, P. (2012). HIF-1α up-regulation is associated with adverse clinicopathological and biological factors in neuroblastomas. Histopathology, 61(3), 417-427. https://doi.org/10.1111/j.1365-2559.2012.04227.x

Edsjö, A., Holmquist, L., & Påhlman, S. (2007). Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Seminars in Cancer Biology, 17(3), 248-256. https://doi.org/https://doi.org/10.1016/j.semcancer.2006.04.005

Eggert, A., Grotzer, M. A., Zuzak, T. J., Wiewrodt, B. R., Ho, R., Ikegaki, N., & Brodeur, G. M. (2001). Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Research, 61(4), 1314-1319.

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495-516. https://doi.org/10.1080/01926230701320337

Fang, H., Harned, T. M., Kalous, O., Maldonado, V., DeClerck, Y. A., & Reynolds, C. P. (2011). Synergistic activity of fenretinide and the Bcl-2 family protein inhibitor ABT-737 against human neuroblastoma. Clinical Cancer Research, 17(22), 7093-7104. https://doi.org/10.1158/1078-0432.Ccr-11-0578

Federico, S. M., McCarville, M. B., Shulkin, B. L., Sondel, P. M., Hank, J. A., Hutson, P., Meagher, M., Shafer, A., Ng, C. Y., Leung, W., Janssen, W. E., Wu, J., Mao, S., Brennan, R. C., Santana, V. M., Pappo, A. S., & Furman, W. L. (2017). A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clinical Cancer Research, 23(21), 6441-6449. https://doi.org/10.1158/1078-0432.Ccr-17-0379

Feichtinger, R. G., Zimmermann, F., Mayr, J. A., Neureiter, D., Hauser-Kronberger, C., Schilling, F. H., Jones, N., Sperl, W., & Kofler, B. (2010). Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer, 10(1), 149. https://doi.org/10.1186/1471-2407-10-149

Fenstermaker, R. A., Ciesielski, M. J., Qiu, J., Yang, N., Frank, C. L., Lee, K. P., Mechtler, L. R., Belal, A., Ahluwalia, M. S., & Hutson, A. D. (2016). Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunology, Immunotherapy, 65(11), 1339-1352. https://doi.org/10.1007/s00262-016-1890-x

Fest, S., Huebener, N., Bleeke, M., Durmus, T., Stermann, A., Woehler, A., Baykan, B., Zenclussen, A. C., Michalsky, E., Jaeger, I. S., Preissner, R., Hohn, O., Weixler, S., Gaedicke, G., & Lode, H. N. (2009). Survivin minigene DNA vaccination is effective against neuroblastoma. International Journal of Cancer, 125(1), 104-114. https://doi.org/10.1002/ijc.24291

Foster, J. H., Voss, S. D., Hall, D. C., Minard, C. G., Balis, F. M., Wilner, K., Berg, S. L., Fox, E., Adamson, P. C., Blaney, S. M., Weigel, B. J., & Mossé, Y. P. (2021). Activity of Crizotinib in Patients with ALK-Aberrant Relapsed/Refractory Neuroblastoma: A Children's Oncology Group Study (ADVL0912). Clinical Cancer Research, 27(13), 3543-3548. https://doi.org/10.1158/1078-0432.Ccr-20-4224

Fouladi, M., Furman, W. L., Chin, T., Freeman, B. B., 3rd, Dudkin, L., Stewart, C. F., Krailo, M. D., Speights, R., Ingle, A. M., Houghton, P. J., Wright, J., Adamson, P. C., & Blaney, S. M. (2006). Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a Children's Oncology Group report. Journal of Clinical Oncology, 24(22), 3678-3685. https://doi.org/10.1200/jco.2006.06.4964

Freebody, J., Wegner, E. A., & Rossleigh, M. A. (2014). 2-deoxy-2-((18)F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology. World Journal of Radiology, 6(10), 741-755. https://doi.org/10.4329/wjr.v6.i10.741

Frentzel, J., Sorrentino, D., & Giuriato, S. (2017). Targeting Autophagy in ALK-Associated Cancers. Cancers, 9(12). https://doi.org/10.3390/cancers9120161

Fritsch, M., Günther, S. D., Schwarzer, R., Albert, M. C., Schorn, F., Werthenbach, J. P., Schiffmann, L. M., Stair, N., Stocks, H., Seeger, J. M., Lamkanfi, M., Krönke, M., Pasparakis, M., & Kashkar, H. (2019). Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 575(7784), 683-687. https://doi.org/10.1038/s41586-019-1770-6

Fulda, S., & Debatin, K. M. (2006). 5-Aza-2'-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene, 25(37), 5125-5133. https://doi.org/10.1038/sj.onc.1209518

Furman, W. L., McCarville, B., Shulkin, B. L., Davidoff, A., Krasin, M., Hsu, C.-W., Pan, H., Wu, J., Brennan, R., Bishop, M. W., Helmig, S., Stewart, E., Navid, F., Triplett, B., Santana, V., Santiago, T., Hank, J. A., Gillies, S. D., Yu, A., . . . Federico, S. M. (2021). Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. Journal of Clinical Oncology, 40(4), 335-344. https://doi.org/10.1200/JCO.21.01375

Gan, L., Ren, Y., Lu, J., Ma, J., Shen, X., & Zhuang, Z. (2020). Synergistic Effect of 3-Bromopyruvate in Combination with Rapamycin Impacted Neuroblastoma Metabolism by Inhibiting Autophagy. Onco Targets & Therapy, 13, 11125-11137. https://doi.org/10.2147/ott.S273108

Geiger, K., Hagenbuchner, J., Rupp, M., Fiegl, H., Sergi, C., Meister, B., Kiechl-Kohlendorfer, U., Müller, T., Ausserlechner, M. J., & Obexer, P. (2012). FOXO3/FKHRL1 is activated by 5-aza-2-deoxycytidine and induces silenced caspase-8 in neuroblastoma. Molecular Biology of the Cell, 23(11), 2226-2234. https://doi.org/10.1091/mbc.E11-06-0535

George, R. E., Lahti, J. M., Adamson, P. C., Zhu, K., Finkelstein, D., Ingle, A. M., Reid, J. M., Krailo, M., Neuberg, D., Blaney, S. M., & Diller, L. (2010). Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children's Oncology Group study. Pediatric Blood & Cancer, 55(4), 629-638. https://doi.org/10.1002/pbc.22607

Gilman, A. L., Ozkaynak, M. F., Matthay, K. K., Krailo, M., Yu, A. L., Gan, J., Sternberg, A., Hank, J. A., Seeger, R., Reaman, G. H., & Sondel, P. M. (2009). Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children's Oncology Group. Journal of Clinical Oncology, 27(1), 85-91. https://doi.org/10.1200/jco.2006.10.3564

Gleissman, H. (2013). Children with High Risk Neuroblastoma: Prophylactic and Therapeutic Treatment with Docosahexaenoic Acid. In M. A. Hayat (Ed.), Pediatric Cancer, Volume 4: Diagnosis, Therapy, and Prognosis (pp. 67-77). Springer Netherlands. https://doi.org/10.1007/978-94-007-6591-7_8

Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3-12. https://doi.org/10.1002/path.2697

Goldsmith, K. C., Gross, M., Peirce, S., Luyindula, D., Liu, X., Vu, A., Sliozberg, M., Guo, R., Zhao, H., Reynolds, C. P., & Hogarty, M. D. (2012). Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma. Cancer Research, 72(10), 2565-2577. https://doi.org/10.1158/0008-5472.Can-11-3603

Goldsmith, K. C., Kayser, K., Groshen, S. G., Chioda, M., Thurm, H. C., Chen, J., Peltz, G., Granger, M., Maris, J., Matthay, K. K., Ghazarian, S., Park, J. R., Berko, E., Marachelian, A., & Mosse, Y. P. (2020). Phase I trial of lorlatinib in patients with ALK-driven refractory or relapsed neuroblastoma: A New Approaches to Neuroblastoma Consortium study. 2020 ASCO Annual Meeting I,

Goldsmith, K. C., Lestini, B. J., Gross, M., Ip, L., Bhumbla, A., Zhang, X., Zhao, H., Liu, X., & Hogarty, M. D. (2010). BH3 response profiles from neuroblastoma mitochondria predict activity of small molecule Bcl-2 family antagonists. Cell Death & Differentiation, 17(5), 872-882. https://doi.org/10.1038/cdd.2009.171

Grau, E., Martinez, F., Orellana, C., Canete, A., Yañez, Y., Oltra, S., Noguera, R., Hernandez, M., Bermúdez, J. D., & Castel, V. (2011). Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Molecular Carcinogenesis, 50(3), 153-162. https://doi.org/10.1002/mc.20700

Guo, C., White, P. S., Weiss, M. J., Hogarty, M. D., Thompson, P. M., Stram, D. O., Gerbing, R., Matthay, K. K., Seeger, R. C., Brodeur, G. M., & Maris, J. M. (1999). Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene, 18(35), 4948-4957. https://doi.org/10.1038/sj.onc.1202887

Ham, J., Costa, C., Sano, R., Lochmann, T. L., Sennott, E. M., Patel, N. U., Dastur, A., Gomez-Caraballo, M., Krytska, K., Hata, A. N., Floros, K. V., Hughes, M. T., Jakubik, C. T., Heisey, D. A., Ferrell, J. T., Bristol, M. L., March, R. J., Yates, C., Hicks, M. A., . . . Faber, A. C. (2016). Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 29(2), 159-172. https://doi.org/10.1016/j.ccell.2016.01.002

Hartman, M. L., & Czyz, M. (2020). BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death & Disease, 11(4), 260. https://doi.org/10.1038/s41419-020-2417-0

Heczey, A., Louis, C. U., Savoldo, B., Dakhova, O., Durett, A., Grilley, B., Liu, H., Wu, M. F., Mei, Z., Gee, A., Mehta, B., Zhang, H., Mahmood, N., Tashiro, H., Heslop, H. E., Dotti, G., Rooney, C. M., & Brenner, M. K. (2017). CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 25(9), 2214-2224. https://doi.org/10.1016/j.ymthe.2017.05.012

Hoegger, M. J., Lieven, C. J., & Levin, L. A. (2008). Differential production of superoxide by neuronal mitochondria. BMC neuroscience, 9, 4-4. https://doi.org/10.1186/1471-2202-9-4

Hoehner, J. C., Hedborg, F., Wiklund, H. J., Olsen, L., & Påhlman, S. (1995). Cellular death in neuroblastoma: in situ correlation of apoptosis and bcl-2 expression. International Journal of Cancer, 62(1), 19-24. https://doi.org/10.1002/ijc.2910620106

Islam, A., Kageyama, H., Takada, N., Kawamoto, T., Takayasu, H., Isogai, E., Ohira, M., Hashizume, K., Kobayashi, H., Kaneko, Y., & Nakagawara, A. (2000). High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene, 19(5), 617-623. https://doi.org/10.1038/sj.onc.1203358

Jan, R., & Chaudhry, G. E. (2019). Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Advance Pharmaceutical Bulletin, 9(2), 205-218. https://doi.org/10.15171/apb.2019.024

Johnsen, J. I., Dyberg, C., Fransson, S., & Wickstrom, M. (2018). Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 131, 164-176. https://doi.org/10.1016/j.phrs.2018.02.023

Kamimatsuse, A., Matsuura, K., Moriya, S., Fukuba, I., Yamaoka, H., Fukuda, E., Kamei, N., Hiyama, K., Sueda, T., & Hiyama, E. (2009). Detection of CpG island hypermethylation of caspase-8 in neuroblastoma using an oligonucleotide array. Pediatric Blood & Cancer, 52(7), 777-783. https://doi.org/10.1002/pbc.21977

Kehr, S., Haydn, T., Bierbrauer, A., Irmer, B., Vogler, M., & Fulda, S. (2020). Targeting BCL-2 proteins in pediatric cancer: Dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer letters, 482, 19-32. https://doi.org/10.1016/j.canlet.2020.02.041

Khan, A., Valli, E., Lam, H., Scott, D. A., Murray, J., Hanssen, K. M., Eden, G., Gamble, L. D., Pandher, R., Flemming, C. L., Allan, S., Osterman, A. L., Haber, M., Norris, M. D., Fletcher, J. I., & Yu, D. M. T. (2020). Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition. Oncogene, 39(17), 3555-3570. https://doi.org/10.1038/s41388-020-1235-2

Kim, H. R., Lee, M. W., Kim, D. S., Jo, H. Y., Lee, S. H., Chueh, H. W., Jung, H. L., Yoo, K. H., Sung, K. W., & Koo, H. H. (2012). Etoposide sensitizes neuroblastoma cells expressing caspase 8 to TRAIL. Cell Biology International Report (2010), 19(1), e00017. https://doi.org/10.1042/CBR20110008

Kim, S., Kang, J., Evers, B. M., & Chung, D. H. (2004). Interferon-gamma induces caspase-8 in neuroblastomas without affecting methylation of caspase-8 promoter. Journal of Pediatric Surgery, 39(4), 509-515. https://doi.org/10.1016/j.jpedsurg.2003.12.009

Klenke, S., Akdeli, N., Stelmach, P., Heukamp, L., Schulte, J. H., & Bachmann, H. S. (2019). The small molecule Bcl-2/Mcl-1 inhibitor TW-37 shows single-agent cytotoxicity in neuroblastoma cell lines. BMC Cancer, 19(1), 243. https://doi.org/10.1186/s12885-019-5439-1

Kraal, K. C., Tytgat, G. A., van Eck-Smit, B. L., Kam, B., Caron, H. N., & van Noesel, M. (2015). Upfront treatment of high-risk neuroblastoma with a combination of 131I-MIBG and topotecan. Pediatric Blood & Cancer, 62(11), 1886-1891. https://doi.org/10.1002/pbc.25580

Kreissman, S. G., Seeger, R. C., Matthay, K. K., London, W. B., Sposto, R., Grupp, S. A., Haas-Kogan, D. A., Laquaglia, M. P., Yu, A. L., Diller, L., Buxton, A., Park, J. R., Cohn, S. L., Maris, J. M., Reynolds, C. P., & Villablanca, J. G. (2013). Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. The Lancet Oncology, 14(10), 999-1008. https://doi.org/10.1016/S1470-2045(13)70309-7

Krishnadas, D. K., Shusterman, S., Bai, F., Diller, L., Sullivan, J. E., Cheerva, A. C., George, R. E., & Lucas, K. G. (2015). A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunology, Immunotherapy, 64(10), 1251-1260. https://doi.org/10.1007/s00262-015-1731-3

Ladenstein, R., Pötschger, U., Valteau-Couanet, D., Luksch, R., Castel, V., Yaniv, I., Laureys, G., Brock, P., Michon, J. M., Owens, C., Trahair, T., Chan, G. C. F., Ruud, E., Schroeder, H., Beck Popovic, M., Schreier, G., Loibner, H., Ambros, P., Holmes, K., . . . Lode, H. N. (2018). Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. The Lancet Oncology, 19(12), 1617-1629. https://doi.org/https://doi.org/10.1016/S1470-2045(18)30578-3

Lakoma, A., Barbieri, E., Agarwal, S., Jackson, J., Chen, Z., Kim, Y., McVay, M., Shohet, J. M., & Kim, E. S. (2015). The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma. Cell Death Discovery, 1, 15026-. https://doi.org/10.1038/cddiscovery.2015.26

Lamers, F., Schild, L., den Hartog, I. J. M., Ebus, M. E., Westerhout, E. M., Ora, I., Koster, J., Versteeg, R., Caron, H. N., & Molenaar, J. J. (2012). Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth. European Journal of Cancer, 48(16), 3093-3103. https://doi.org/https://doi.org/10.1016/j.ejca.2012.01.037

Längler, A., Christaras, A., Abshagen, K., Krauth, K., Hero, B., & Berthold, F. (2002). Topotecan in the treatment of refractory neuroblastoma and other malignant tumors in childhood - a phase-II-study. Klinische Pädiatrie, 214(4), 153-156. https://doi.org/10.1055/s-2002-33175

Lau, L. M., Nugent, J. K., Zhao, X., & Irwin, M. S. (2008). HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene, 27(7), 997-1003. https://doi.org/10.1038/sj.onc.1210707

Lázcoz, P., Muñoz, J., Nistal, M., Pestaña, A., Encío, I., & Castresana, J. S. (2006). Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer, 6, 254. https://doi.org/10.1186/1471-2407-6-254

Le Grand, M., Mukha, A., Püschel, J., Valli, E., Kamili, A., Vittorio, O., Dubrovska, A., & Kavallaris, M. (2020). Interplay between MycN and c-Myc regulates radioresistance and cancer stem cell phenotype in neuroblastoma upon glutamine deprivation. Theranostics, 10(14), 6411-6429. https://doi.org/10.7150/thno.42602

Levy, A. G., Zage, P. E., Akers, L. J., Ghisoli, M. L., Chen, Z., Fang, W., Kannan, S., Graham, T., Zeng, L., Franklin, A. R., Huang, P., & Zweidler-McKay, P. A. (2012). The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma. Investigational New Drugs, 30(1), 191-199. https://doi.org/10.1007/s10637-010-9551-y

Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K., & Wu, H. (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 150(2), 339-350. https://doi.org/10.1016/j.cell.2012.06.019

Li, N., He, Y., Wang, L., Mo, C., Zhang, J., Zhang, W., Li, J., Liao, Z., Tang, X., & Xiao, H. (2011). D-galactose induces necroptotic cell death in neuroblastoma cell lines. Journal of Cellular Biochemistry, 112(12), 3834-3844. https://doi.org/10.1002/jcb.23314

Lode, H. N., Valteau-Couanet, D., Garaventa, A., Gray, J., Castel, V., Yaniv, I., Siebert, N., Jensen, C., Endres, S., Pill, L., Eger, C., Seidel, D., Juettner, M., Kietz, S., Ehlert, K., Janzek, E., Loibner, H., Mueller, I., & Ladenstein, R. L. (2015). Long-term infusion of anti-GD2 antibody ch14.18/CHO in combination with interleukin-2 (IL2) activity and efficacy in high-risk relapsed/refractory neuroblastoma patients. Journal of Clinical Oncology, 33(15_suppl), TPS10080-TPS10080. https://doi.org/10.1200/jco.2015.33.15_suppl.tps10080

London, W. B., Frantz, C. N., Campbell, L. A., Seeger, R. C., Brumback, B. A., Cohn, S. L., Matthay, K. K., Castleberry, R. P., & Diller, L. (2010). Phase II randomized comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma: a Children's Oncology Group study. Journal of Clinical Oncology, 28(24), 3808-3815. https://doi.org/10.1200/jco.2009.27.5016

LoRusso, P., Ratain, M. J., Doi, T., Rasco, D. W., de Jonge, M. J. A., Moreno, V., Carneiro, B. A., Devriese, L. A., Petrich, A., Modi, D., Morgan-Lappe, S., Nuthalapati, S., Motwani, M., Dunbar, M., Glasgow, J., Medeiros, B. C., & Calvo, E. (2022). Eftozanermin alfa (ABBV-621) monotherapy in patients with previously treated solid tumors: findings of a phase 1, first-in-human study. Investigational New Drugs, 1-11. https://doi.org/10.1007/s10637-022-01247-1

Louis, C. U., Savoldo, B., Dotti, G., Pule, M., Yvon, E., Myers, G. D., Rossig, C., Russell, H. V., Diouf, O., Liu, E., Liu, H., Wu, M. F., Gee, A. P., Mei, Z., Rooney, C. M., Heslop, H. E., & Brenner, M. K. (2011). Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood, 118(23), 6050-6056. https://doi.org/10.1182/blood-2011-05-354449

Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J. A., Geneste, O., & Kroemer, G. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. The EMBO Journal, 26(10), 2527-2539. https://doi.org/10.1038/sj.emboj.7601689

Mangraviti, A., Raghavan, T., Volpin, F., Skuli, N., Gullotti, D., Zhou, J., Asnaghi, L., Sankey, E., Liu, A., Wang, Y., Lee, D.-H., Gorelick, N., Serra, R., Peters, M., Schriefer, D., Delaspre, F., Rodriguez, F. J., Eberhart, C. G., Brem, H., . . . Tyler, B. (2017). HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy. Scientific Reports, 7(1), 14978. https://doi.org/10.1038/s41598-017-14990-w

Martinsson, T., Sjöberg, R. M., Hallstensson, K., Nordling, M., Hedborg, F., & Kogner, P. (1997). Delimitation of a critical tumour suppressor region at distal 1p in neuroblastoma tumours. European Journal of Cancer, 33(12), 1997-2001. https://doi.org/10.1016/s0959-8049(97)00278-5

Matsushita, K., Uchida, K., Saigusa, S., Ide, S., Hashimoto, K., Koike, Y., Otake, K., Inoue, M., Tanaka, K., & Kusunoki, M. (2012). Glycolysis inhibitors as a potential therapeutic option to treat aggressive neuroblastoma expressing GLUT1. Journal of Pediatric Surgery, 47(7), 1323-1330. https://doi.org/10.1016/j.jpedsurg.2011.12.007

Maximchik, P., Abdrakhmanov, A., Inozemtseva, E., Tyurin-Kuzmin, P. A., Zhivotovsky, B., & Gogvadze, V. (2018). 2-Deoxy-D-glucose has distinct and cell line-specific effects on the survival of different cancer cells upon antitumor drug treatment. FEBS Journal, 285(24), 4590-4601. https://doi.org/10.1111/febs.14687

Merchant, M. S., Geller, J. I., Baird, K., Chou, A. J., Galli, S., Charles, A., Amaoko, M., Rhee, E. H., Price, A., Wexler, L. H., Meyers, P. A., Widemann, B. C., Tsokos, M., & Mackall, C. L. (2012). Phase I trial and pharmacokinetic study of lexatumumab in pediatric patients with solid tumors. Journal of Clinical Oncology, 30(33), 4141-4147. https://doi.org/10.1200/jco.2012.44.1055

Miller, C. H. T., Maher, S. G., & Young, H. A. (2009). Clinical Use of Interferon-gamma. Annals of the New York Academy of Sciences, 1182, 69-79. https://doi.org/10.1111/j.1749-6632.2009.05069.x

Modak, S., Le Luduec, J. B., Cheung, I. Y., Goldman, D. A., Ostrovnaya, I., Doubrovina, E., Basu, E., Kushner, B. H., Kramer, K., Roberts, S. S., O'Reilly, R. J., Cheung, N. V., & Hsu, K. C. (2018). Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. Oncoimmunology, 7(8), e1461305. https://doi.org/10.1080/2162402x.2018.1461305

Mody, R., Yu, A. L., Naranjo, A., Zhang, F. F., London, W. B., Shulkin, B. L., Parisi, M. T., Servaes, S. E., Diccianni, M. B., Hank, J. A., Felder, M., Birstler, J., Sondel, P. M., Asgharzadeh, S., Glade-Bender, J., Katzenstein, H., Maris, J. M., Park, J. R., & Bagatell, R. (2020). Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 38(19), 2160-2169. https://doi.org/10.1200/jco.20.00203

Moll, U. M., Ostermeyer, A. G., Haladay, R., Winkfield, B., Frazier, M., & Zambetti, G. (1996). Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Molecular & Cell Biology, 16(3), 1126-1137. https://doi.org/10.1128/MCB.16.3.1126

Montero, J., & Haq, R. (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discovery, 12(5), 1217-1232. https://doi.org/10.1158/2159-8290.CD-21-1334

Morandi, F., Sabatini, F., Podestà, M., & Airoldi, I. (2021). Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel), 9(1). https://doi.org/10.3390/vaccines9010043

Mueller, B. M., Romerdahl, C. A., Gillies, S. D., & Reisfeld, R. A. (1990). Enhancement of antibody-dependent cytotoxicity with a chimeric anti-GD2 antibody. The Journal of Immunology, 144(4), 1382. http://www.jimmunol.org/content/144/4/1382.abstract

Muhlethaler-Mottet, A., Flahaut, M., Bourloud, K. B., Auderset, K., Meier, R., Joseph, J. M., & Gross, N. (2006). Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio. BMC Cancer, 6, 214. https://doi.org/10.1186/1471-2407-6-214

Mullassery, D., & Losty, P. D. (2016). Neuroblastoma. Paediatrics and Child Health, 26(2), 68-72. https://doi.org/10.1016/j.paed.2015.11.005

Murphy, J. M., Czabotar, P. E., Hildebrand, J. M., Lucet, I. S., Zhang, J. G., Alvarez-Diaz, S., Lewis, R., Lalaoui, N., Metcalf, D., Webb, A. I., Young, S. N., Varghese, L. N., Tannahill, G. M., Hatchell, E. C., Majewski, I. J., Okamoto, T., Dobson, R. C., Hilton, D. J., Babon, J. J., . . . Alexander, W. S. (2013). The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity, 39(3), 443-453. https://doi.org/10.1016/j.immuni.2013.06.018

Navid, F., Sondel, P. M., Barfield, R., Shulkin, B. L., Kaufman, R. A., Allay, J. A., Gan, J., Hutson, P., Seo, S., Kim, K., Goldberg, J., Hank, J. A., Billups, C. A., Wu, J., Furman, W. L., McGregor, L. M., Otto, M., Gillies, S. D., Handgretinger, R., & Santana, V. M. (2014). Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. Journal of Clinical Oncology, 32(14), 1445-1452. https://doi.org/10.1200/jco.2013.50.4423

Nguyen, R., Sahr, N., Sykes, A., McCarville, M. B., Federico, S. M., Sooter, A., Cullins, D., Rooney, B., Janssen, W. E., Talleur, A. C., Triplett, B. M., Anthony, G., Dyer, M. A., Pappo, A. S., Leung, W. H., & Furman, W. L. (2020). Longitudinal NK cell kinetics and cytotoxicity in children with neuroblastoma enrolled in a clinical phase II trial. Journal for Immunotherapy of Cancer, 8(1). https://doi.org/10.1136/jitc-2019-000176

Nicolai, S., Pieraccioli, M., Peschiaroli, A., Melino, G., & Raschellà, G. (2015). Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death & Disease, 6(12), e2010. https://doi.org/10.1038/cddis.2015.354

Niewisch, M. R., Kuçi, Z., Wolburg, H., Sautter, M., Krampen, L., Deubzer, B., Handgretinger, R., & Bruchelt, G. (2012). Influence of dichloroacetate (DCA) on lactate production and oxygen consumption in neuroblastoma cells: is DCA a suitable drug for neuroblastoma therapy? Cellular Physiology and Biochemistry, 29(3-4), 373-380. https://doi.org/10.1159/000338492

Nomura, M., Ueno, A., Saga, K., Fukuzawa, M., & Kaneda, Y. (2014). Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Research, 74(4), 1056-1066. https://doi.org/10.1158/0008-5472.Can-13-1283

Olsen, R. R., Mary-Sinclair, M. N., Yin, Z., & Freeman, K. W. (2015). Antagonizing Bcl-2 family members sensitizes neuroblastoma and Ewing's sarcoma to an inhibitor of glutamine metabolism. PLoS One, 10(1), e0116998. https://doi.org/10.1371/journal.pone.0116998

Påhlman, S., & Mohlin, S. (2018). Hypoxia and hypoxia-inducible factors in neuroblastoma. Cell and Tissue Research, 372(2), 269-275. https://doi.org/10.1007/s00441-017-2701-1

Pajuelo-Reguera, D., Alán, L., Olejár, T., & Ježek, P. (2015). Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells. International Journal of Oncology, 46(6), 2409-2418. https://doi.org/10.3892/ijo.2015.2953

Panicker, J., Li, Z., McMahon, C., Sizer, C., Steadman, K., Piekarz, R., Bates, S. E., & Thiele, C. J. (2010). Romidepsin (FK228/depsipeptide) controls growth and induces apoptosis in neuroblastoma tumor cells. Cell Cycle, 9(9), 1830-1838. https://doi.org/10.4161/cc.9.9.11543

Park, J. R., Kreissman, S. G., London, W. B., Naranjo, A., Cohn, S. L., Hogarty, M. D., Tenney, S. C., Haas-Kogan, D., Shaw, P. J., Kraveka, J. M., Roberts, S. S., Geiger, J. D., Doski, J. J., Voss, S. D., Maris, J. M., Grupp, S. A., & Diller, L. (2019). Effect of Tandem Autologous Stem Cell Transplant vs Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: A Randomized Clinical Trial. JAMA, 322(8), 746-755. https://doi.org/10.1001/jama.2019.11642

Park, J. R., Scott, J. R., Stewart, C. F., London, W. B., Naranjo, A., Santana, V. M., Shaw, P. J., Cohn, S. L., & Matthay, K. K. (2011). Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children's Oncology Group study. Journal of Clinical Oncology, 29(33), 4351-4357. https://doi.org/10.1200/jco.2010.34.3293

Parodi, S., Perfumo, C., Garaventa, A., Inga, A., Mazzocco, K., Defferrari, R., Tonini, G. P., Fronza, G., & Haupt, R. (2010). MDM2 SNP309 genotype is associated with ferritin and LDH serum levels in children with stage 4 neuroblastoma. Pediatric Blood & Cancer, 55(2), 267-272. https://doi.org/10.1002/pbc.22477

Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., & Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-939. https://doi.org/10.1016/j.cell.2005.07.002

Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633-4646. https://doi.org/10.1038/sj.onc.1209597

Pentimalli, F., Grelli, S., Di Daniele, N., Melino, G., & Amelio, I. (2019). Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes & Immunity, 20(7), 539-554. https://doi.org/10.1038/s41435-018-0052-x

Perez Horta, Z., Goldberg, J. L., & Sondel, P. M. (2016). Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy, 8(9), 1097-1117. https://doi.org/10.2217/imt-2016-0021

Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., Huls, M. H., Liu, E., Gee, A. P., Mei, Z., Yvon, E., Weiss, H. L., Liu, H., Rooney, C. M., Heslop, H. E., & Brenner, M. K. (2008). Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 14(11), 1264-1270. https://doi.org/10.1038/nm.1882

Qiu, Z. L., Saito, S., Kayano, D., Wakabayashi, H., & Kinuya, S. (2021). Comparison of the detecting capability between (123)I-mIBG and post-therapeutic (131)I-mIBG scintigraphy for curie scoring in patients with neuroblastoma after chemotherapy. Annals of Nuclear Medicine, 35(6), 649-661. https://doi.org/10.1007/s12149-020-01569-1

Quintarelli, C., Orlando, D., Boffa, I., Guercio, M., Polito, V. A., Petretto, A., Lavarello, C., Sinibaldi, M., Weber, G., Del Bufalo, F., Giorda, E., Scarsella, M., Petrini, S., Pagliara, D., Locatelli, F., De Angelis, B., & Caruana, I. (2018). Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology, 7(6), e1433518-e1433518. https://doi.org/10.1080/2162402X.2018.1433518

Raez, L. E., Papadopoulos, K., Ricart, A. D., Chiorean, E. G., Dipaola, R. S., Stein, M. N., Rocha Lima, C. M., Schlesselman, J. J., Tolba, K., Langmuir, V. K., Kroll, S., Jung, D. T., Kurtoglu, M., Rosenblatt, J., & Lampidis, T. J. (2013). A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemotherapy & Pharmacology, 71(2), 523-530. https://doi.org/10.1007/s00280-012-2045-1

Rahman, M. A., Bishayee, K., Sadra, A., & Huh, S.-O. (2017). Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1861(2), 23-36. https://doi.org/https://doi.org/10.1016/j.bbagen.2016.10.025

Ralff, M. D., & El-Deiry, W. S. (2018). TRAIL pathway targeting therapeutics. Expert Review of Precision Medicine & Drug Development, 3(3), 197-204. https://doi.org/10.1080/23808993.2018.1476062

Rayburn, E., Zhang, R., He, J., & Wang, H. (2005). MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Current Cancer Drug Targets, 5(1), 27-41. https://doi.org/10.2174/1568009053332636

Reed, J. C., Meister, L., Tanaka, S., Cuddy, M., Yum, S., Geyer, C., & Pleasure, D. (1991). Differential expression of bcl2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin. Cancer Research, 51(24), 6529-6538. https://www.ncbi.nlm.nih.gov/pubmed/1742726

Roberts, A. W., Davids, M. S., Pagel, J. M., Kahl, B. S., Puvvada, S. D., Gerecitano, J. F., Kipps, T. J., Anderson, M. A., Brown, J. R., Gressick, L., Wong, S., Dunbar, M., Zhu, M., Desai, M. B., Cerri, E., Heitner Enschede, S., Humerickhouse, R. A., Wierda, W. G., & Seymour, J. F. (2016). Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 374(4), 311-322. https://doi.org/10.1056/NEJMoa1513257

Safa, A. R., & Pollok, K. E. (2011). Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers, 3(2), 1639-1671. https://doi.org/10.3390/cancers3021639

Sayers, T. J. (2011). Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunology & Immunotherapy, 60(8), 1173-1180. https://doi.org/10.1007/s00262-011-1008-4

Seitz, C. M., Flaadt, T., Mezger, M., Lang, A. M., Michaelis, S., Katz, M., Syring, D., Joechner, A., Rabsteyn, A., Siebert, N., Troschke-Meurer, S., Zumpe, M., Lode, H. N., Yang, S. F., Atar, D., Mast, A. S., Scheuermann, S., Heubach, F., Handgretinger, R., . . . Schlegel, P. (2021). Immunomonitoring of Stage IV Relapsed Neuroblastoma Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation and Subsequent GD2 (ch14.18/CHO) Antibody Treatment. Frontiers in Immunology, 12, 690467. https://doi.org/10.3389/fimmu.2021.690467

Shimada, H., & Ikegaki, N. (2019). Neuroblastoma Pathology and Classification for Precision Prognosis and Therapy Stratification. In S. K. Ray (Ed.), Neuroblastoma: Molecular Mechanisms and Therapeutic Interventions (pp. 1-22). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812005-7.01001-8

Slack, A., Chen, Z., Tonelli, R., Pule, M., Hunt, L., Pession, A., & Shohet, J. M. (2005). The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 731-736. https://doi.org/10.1073/pnas.0405495102

Smith, V., & Foster, J. (2018). High-Risk Neuroblastoma Treatment Review. Children (Basel), 5(9). https://doi.org/10.3390/children5090114

Smolewski, P. (2008). Terameprocol, a novel site-specific transcription inhibitor with anticancer activity. IDrugs, 11(3), 204-214. https://www.ncbi.nlm.nih.gov/pubmed/18311658

Sorkin, L. S., Otto, M., Baldwin, W. M., 3rd, Vail, E., Gillies, S. D., Handgretinger, R., Barfield, R. C., Yu, H. M., & Yu, A. L. (2010). Anti-GD(2) with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia. Pain, 149(1), 135-142. https://doi.org/10.1016/j.pain.2010.01.024

Strasser, A., & Vaux, D. L. (2020). Cell Death in the Origin and Treatment of Cancer. Molecular Cell, 78(6), 1045-1054. https://doi.org/https://doi.org/10.1016/j.molcel.2020.05.014

Swettenham, E., Witting, P. K., Salvatore, B. A., & Neuzil, J. (2005). Alpha-tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? Journal of Neurochemistry, 94(5), 1448-1456. https://doi.org/10.1111/j.1471-4159.2005.03298.x

Tan, J. K., Then, S. M., Mazlan, M., Raja Abdul Rahman, R. N., Jamal, R., & Wan Ngah, W. Z. (2016). Gamma-tocotrienol acts as a BH3 mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells. Journal of Nutritional Biochemistry, 31, 28-37. https://doi.org/10.1016/j.jnutbio.2015.12.019

Tanos, R., Karmali, D., Nalluri, S., & Goldsmith, K. C. (2016). Select Bcl-2 antagonism restores chemotherapy sensitivity in high-risk neuroblastoma. BMC Cancer, 16, 97. https://doi.org/10.1186/s12885-016-2129-0

Teitz, T., Lahti, J. M., & Kidd, V. J. (2001). Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. Journal of Molecular Medicine (Berl), 79(8), 428-436. https://doi.org/10.1007/s001090100233

Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., & Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Medicine, 6(5), 529-535. https://doi.org/10.1038/75007

Terzic, T., Cordeau, M., Herblot, S., Teira, P., Cournoyer, S., Beaunoyer, M., Peuchmaur, M., Duval, M., & Sartelet, H. (2018). Expression of Disialoganglioside (GD2) in Neuroblastic Tumors: A Prognostic Value for Patients Treated With Anti-GD2 Immunotherapy. Pediatric & Developmental Patholology, 21(4), 355-362. https://doi.org/10.1177/1093526617723972

Tolbert, V. P., & Matthay, K. K. (2018). Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell & Tissue Research, 372(2), 195-209. https://doi.org/10.1007/s00441-018-2821-2

Tong, H., Lu, C., Yang, Y., Zhang, J., & Zhang, J. (2009). Role of caspase 8 as a determinant in TRAIL sensitivity of neuroblastoma cell lines Pediatric Hematology and Oncology, 26(8), 549-559. https://doi.org/10.3109/08880010903271663

Tong, H. X., Lu, C. W., Wang, Q. S., & Ma, L. Y. (2011). Combination of IFNgamma and chemotherapeutic agents increase TRAIL sensitivity of neuroblastoma cell lines. European Journal of Pediatric Surgery, 21(5), 304-309. https://doi.org/10.1055/s-0031-1279762

Tummers, B., & Green, D. R. (2017). Caspase-8: regulating life and death. Immunological Reviews, 277(1), 76-89. https://doi.org/10.1111/imr.12541

Tweddle, D. A., Pearson, A. D., Haber, M., Norris, M. D., Xue, C., Flemming, C., & Lunec, J. (2003). The p53 pathway and its inactivation in neuroblastoma. Cancer letters, 197(1-2), 93-98. https://doi.org/10.1016/s0304-3835(03)00088-0

Valter, K., Zhivotovsky, B., & Gogvadze, V. (2018). Cell death-based treatment of neuroblastoma. Cell Death & Disease, 9(2), 113. https://doi.org/10.1038/s41419-017-0060-1

Van Maerken, T., Ferdinande, L., Taildeman, J., Lambertz, I., Yigit, N., Vercruysse, L., Rihani, A., Michaelis, M., Cinatl, J., Jr., Cuvelier, C. A., Marine, J. C., De Paepe, A., Bracke, M., Speleman, F., & Vandesompele, J. (2009). Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. Journal of the National Cancer Institute, 101(22), 1562-1574. https://doi.org/10.1093/jnci/djp355

Van Maerken, T., Rihani, A., Dreidax, D., De Clercq, S., Yigit, N., Marine, J. C., Westermann, F., De Paepe, A., Vandesompele, J., & Speleman, F. (2011). Functional analysis of the p53 pathway in neuroblastoma cells using the small-molecule MDM2 antagonist nutlin-3. Molecular Cancer Therapeutics, 10(6), 983-993. https://doi.org/10.1158/1535-7163.MCT-10-1090

Vernooij, L., Bate-Eya, L. T., Alles, L. K., Lee, J. Y., Koopmans, B., Jonus, H. C., Schubert, N. A., Schild, L., Lelieveld, D., Egan, D. A., Kerstjens, M., Stam, R. W., Koster, J., Goldsmith, K. C., Molenaar, J. J., & Dolman, M. E. M. (2021). High-Throughput Screening Identifies Idasanutlin as a Resensitizing Drug for Venetoclax-Resistant Neuroblastoma Cells. Molecular Cancer Therapeutics, 20(6), 1161-1172. https://doi.org/10.1158/1535-7163.Mct-20-0666

Vo, D.-K. H., Urano, Y., Takabe, W., Saito, Y., & Noguchi, N. (2015). 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8. Steroids, 99, 230-237. https://doi.org/https://doi.org/10.1016/j.steroids.2015.02.007

Vogan, K., Bernstein, M., Leclerc, J. M., Brisson, L., Brossard, J., Brodeur, G. M., Pelletier, J., & Gros, P. (1993). Absence of p53 gene mutations in primary neuroblastomas. Cancer Research, 53(21), 5269-5273.

Wang, J. X., & Zheng, S. (2004). Caspase-3 and survivin expression in pediatric neuroblastoma and their roles in apoptosis. Chinese Medicine Journal (Engl), 117(12), 1821-1824.

Wang, S. S., Hsiao, R., Limpar, M. M., Lomahan, S., Tran, T. A., Maloney, N. J., Ikegaki, N., & Tang, X. X. (2014). Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin. International Journal of Molecular Medicine, 33(1), 35-42. https://doi.org/10.3892/ijmm.2013.1545

Wang, T., Liu, L., Chen, X., Shen, Y., Lian, G., Shah, N., Davidoff, A. M., Yang, J., & Wang, R. (2018). MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death & Disease, 9(2), 220. https://doi.org/10.1038/s41419-018-0295-5

Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X.-Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B., & Thompson, C. B. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782-18787. https://doi.org/10.1073/pnas.0810199105

Wolter, J., Angelini, P., & Irwin, M. (2010). p53 family: Therapeutic targets in neuroblastoma. Future Oncology, 6(3), 429-444. https://doi.org/10.2217/fon.09.176

Wondimu, A., Liu, Y., Su, Y., Bobb, D., Ma, J. S. Y., Chakrabarti, L., Radoja, S., & Ladisch, S. (2014). Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Research, 74(19), 5449-5457. https://doi.org/10.1158/0008-5472.CAN-14-0927

Wu, H., & Leng, R. P. (2015). MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function. Oncotarget, 6(25), 21479-21492. https://doi.org/10.18632/oncotarget.4086

Wu, Y., Wang, X., Guo, H., Zhang, B., Zhang, X. B., Shi, Z. J., & Yu, L. (2013). Synthesis and screening of 3-MA derivatives for autophagy inhibitors. Autophagy, 9(4), 595-603. https://doi.org/10.4161/auto.23641

Wu, Z. L., Schwartz, E., Seeger, R., & Ladisch, S. (1986). Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Research, 46(1), 440-443.

Xiao, D., Ren, P., Su, H., Yue, M., Xiu, R., Hu, Y., Liu, H., & Qing, G. (2015). Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget, 6(38), 40655-40666. https://doi.org/10.18632/oncotarget.5821

Xu, D.-Q., Toyoda, H., Yuan, X.-J., Qi, L., Chelakkot, V. S., Morimoto, M., Hanaki, R., Kihira, K., Hori, H., Komada, Y., & Hirayama, M. (2018). Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo. Experimental Cell Research, 365(2), 177-184. https://doi.org/https://doi.org/10.1016/j.yexcr.2018.02.032

Xu, H. D., Wu, D., Gu, J. H., Ge, J. B., Wu, J. C., Han, R., Liang, Z. Q., & Qin, Z. H. (2013). The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions. PLoS One, 8(5), e63232. https://doi.org/10.1371/journal.pone.0063232

Yamanaka, K., Saito, Y., Yamamori, T., Urano, Y., & Noguchi, N. (2011). 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis. Journal of Biological Chemistry, 286(28), 24666-24673. https://doi.org/10.1074/jbc.M111.236273

Yang, X., Merchant, M. S., Romero, M. E., Tsokos, M., Wexler, L. H., Kontny, U., Mackall, C. L., & Thiele, C. J. (2003). Induction of caspase 8 by interferon gamma renders some neuroblastoma (NB) cells sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but reveals that a lack of membrane TR1/TR2 also contributes to TRAIL resistance in NB. Cancer Research, 63(5), 1122-1129.

Yanik, G. A., Villablanca, J. G., Maris, J. M., Weiss, B., Groshen, S., Marachelian, A., Park, J. R., Tsao-Wei, D., Hawkins, R., Shulkin, B. L., Jackson, H., Goodarzian, F., Shimada, H., Courtier, J., Hutchinson, R., Haas-Koga, D., Hasenauer, C. B., Czarnecki, S., Katzenstein, H. M., & Matthay, K. K. (2015). 131I-Metaiodobenzylguanidine with Intensive Chemotherapy and Autologous Stem Cell Transplantation for High-Risk Neuroblastoma. A New Approaches to Neuroblastoma Therapy (NANT) Phase II Study. Biology of Blood and Marrow Transplantation, 21(4), 673-681. https://doi.org/https://doi.org/10.1016/j.bbmt.2014.12.008

Yu, A. L., Gilman, A. L., Ozkaynak, M. F., London, W. B., Kreissman, S. G., Chen, H. X., Smith, M., Anderson, B., Villablanca, J. G., Matthay, K. K., Shimada, H., Grupp, S. A., Seeger, R., Reynolds, C. P., Buxton, A., Reisfeld, R. A., Gillies, S. D., Cohn, S. L., Maris, J. M., . . . Children's Oncology, G. (2010). Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. New England Journal of Medicine, 363(14), 1324-1334. https://doi.org/10.1056/NEJMoa0911123

Yu, A. L., Gilman, A. L., Ozkaynak, M. F., Naranjo, A., Diccianni, M. B., Gan, J., Hank, J. A., Batova, A., London, W. B., Tenney, S. C., Smith, M., Shulkin, B. L., Parisi, M., Matthay, K. K., Cohn, S. L., Maris, J. M., Bagatell, R., Park, J. R., & Sondel, P. M. (2021). Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clinical Cancer Research, 27(8), 2179-2189. https://doi.org/10.1158/1078-0432.Ccr-20-3909

Yu, X., Fan, H., Jiang, X., Zheng, W., Yang, Y., Jin, M., Ma, X., & Jiang, W. (2020). Apatinib induces apoptosis and autophagy via the PI3K/AKT/mTOR and MAPK/ERK signaling pathways in neuroblastoma. Oncology Letters, 20(4), 52. https://doi.org/10.3892/ol.2020.11913

Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., McKeon, F., Foster, J., Zhou, J., & Zhang, R. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews, 41(2), 961-1021. https://doi.org/10.1002/med.21750

Zaika, A., Marchenko, N., & Moll, U. M. (1999). Cytoplasmically "sequestered" Wild Type p53 Protein Is Resistant to Mdm2-mediated Degradation. Journal of Biological Chemistry, 274(39), 27474-27480. https://doi.org/10.1074/jbc.274.39.27474

Zeng, Y., Fest, S., Kunert, R., Katinger, H., Pistoia, V., Michon, J., Lewis, G., Ladenstein, R., & Lode, H. N. (2005). Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Molecular Immunology, 42(11), 1311-1319. https://doi.org/10.1016/j.molimm.2004.12.018

Zhang, H., Pu, J., Qi, T., Qi, M., Yang, C., Li, S., Huang, K., Zheng, L., & Tong, Q. (2014). MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene, 33(3), 387-397. https://doi.org/10.1038/onc.2012.574

Zhou, S., Gu, L., He, J., Zhang, H., & Zhou, M. (2011). MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Molecular & Cellular Biology, 31(24), 4928-4937. https://doi.org/10.1128/MCB.06085-11

Downloads

Published

2022-09-23

How to Cite

Temirbek, A. and Then, S. M. (2022) “Latest advances in cell-death pathway approaches in treating high-risk neuroblastoma”, Neuroscience Research Notes, 5(3), p. 147. doi: 10.31117/neuroscirn.v5i3.147.