The effect of an acute bout of high intensity intermittent exercise on neural growth factors in young adults: Sex differences

Authors

  • Prachi Khandekar MYAS- GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
  • Shweta Shenoy MYAS- GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
  • Abhinav Sathe MYAS- GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India, 143005

DOI:

https://doi.org/10.31117/neuroscirn.v5i2.146

Keywords:

High intensity intermittent exercise, gonadal hormones, neural growth factor, sex differences

Abstract

The neurophysiological response to exercise on cognition is modulated through chemical pathways which involve several neurotrophic factors and the sex of the individual determines this effect. We examined sex differences in the concentration of neural growth factors (NGF); brain derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and insulin like growth factor-I (IGF- I) in response to acute high intensity intermittent exercise (HIIE). We also evaluated the relationship of NGF with gonadal hormones before and after the HIIE session. Forty healthy young adults (22 males and 18 females) performed HIIE (4 bouts of 4 minutes at 90–95% HR max with 3min active recovery at 70% HRmax). Venous blood was drawn before and immediately after the exercise session and was analyzed for the concentration of serum BDNF, VEGF, IGF-I, cortisol, estradiol, luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, using ELISA method. A significant sex difference (p<0.05) was observed for BDNF concentration in response to HIIE and a significant increase was found in males but not in females. A significant (p<0.005) positive correlation of BDNF with FSH and LH and a significant (p<0.05) negative correlation of BDNF and VEGF with testosterone were found. Other NGFs (VEGF and IGF-I) did not show sex differences in response to HIIE. In conclusion, a single session of HIIE increases the serum concentration of BDNF in males and IGF-I in females and the response of NGF is different in males and females.

Author Biographies

Prachi Khandekar, MYAS- GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India, 143005

Ph.D. Scholar

Abhinav Sathe, MYAS- GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar, Punjab, India, 143005

Ph.D. Scholar

References

Allen, K. M., Purves-Tyson, T. D., Fung, S. J., & Shannon Weickert, C. (2015). The effect of adolescent testosterone on hippocampal BDNF and TrkB mRNA expression: Relationship with cell proliferation. BMC Neuroscience, 16, 4. https://doi.org/10.1186/s12868-015-0142-x

Aubets, J., & Segura, J. (1995). Salivary cortisol as a marker of competition related stress. Science & Sports, 10(3), 149–154. https://doi.org/10.1016/0765-1597(96)89361-0

Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., Plymate, S. R., Fishel, M. A., Watson, G. S., Cholerton, B. A., Duncan, G. E., Mehta, P. D., & Craft, S. (2010). Effects of Aerobic Exercise on Mild Cognitive Impairment: A Controlled Trial. Archives of Neurology, 67(1), 71–79. https://doi.org/10.1001/archneurol.2009.307

Barbieri, R. L. (2014). The Endocrinology of the Menstrual Cycle. In Z. Rosenwaks& P. M. Wassarman (Eds.), Human Fertility (Vol. 1154, pp. 145–169). Springer New York. https://doi.org/10.1007/978-1-4939-0659-8_7

Basso, J. C., & Suzuki, W. A. (2017). The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plasticity, 2(2), 127–152. https://doi.org/10.3233/BPL-160040

Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 133(3), 853–861. https://doi.org/10.1016/j.neuroscience.2005.03.026

Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus: Estrogen and exercise regulate hippocampal BDNF. European Journal of Neuroscience, 14(12), 1992–2002. https://doi.org/10.1046/j.0953-816x.2001.01825.x

Berciano Guerrero, M. A., De la Haba Rodriguez, J., Castellano, J., Porras, I., Pulido, G., Jimenez, J., Sempere, M.T., Barneto I. & Aranda, E. (2010). Effect of sex steroid hormones on serum levels of vascular endothelial growth factor (VEGF) in a murine model. Journal of Clinical Oncology, 28(15_suppl), e21097-e21097. https://doi.org/10.1200/jco.2010.28.15_suppl.e21097

Bohm-Levine, N., Goldberg, A. R., Mariani, M., Frankfurt, M., & Thornton, J. (2020). Reducing luteinizing hormone levels after ovariectomy improves spatial memory: Possible role of brain-derived neurotrophic factor. Hormones and Behavior, 118, 104590. https://doi.org/10.1016/j.yhbeh.2019.104590

Boutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011, 1–10. https://doi.org/10.1155/2011/868305

Brownlee, K. K., Moore, A. W., & Hackney, A. C. (2005). Relationship between circulating cortisol and testosterone: influence of physical exercise. Journal of Sports Science & Medicine, 4(1), 76–83.

Cabral-Santos, C., Castrillón, C. I. M., Miranda, R. A. T., Monteiro, P. A., Inoue, D. S., Campos, E. Z., Hofmann, P., & Lira, F. S. (2016). Inflammatory cytokines and bdnf response to high-intensity intermittent exercise: effect the exercise. Frontiers in Physiology, 7, 509. https://doi.org/10.3389/fphys.2016.00509

Cabral-Santos, C., Gerosa-Neto, J., Inoue, D. S., Gonçalves, V. L., Gobbo, L. A., Zagatto, A. M., Campos, E. Z., & Lira, F. S. (2015). Similar anti-inflammatory acute responses from moderate-intensity continuous and high-intensity intermittent exercise. Journal of Sports Science and Medicine, 14, 849–856.

Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating Insulin-Like Growth Factor I Mediates Effects of Exercise on the Brain. Journal of Neuroscience, 20(8), 2926–2933. https://doi.org/10.1523/JNEUROSCI.20-08-02926.2000

Chan, C. B., & Ye, K. (2017). Sex differences in brain-derived neurotrophic factor signaling and functions: Sex Differences in BDNF Activity. Journal of Neuroscience Research, 95(1–2), 328–335. https://doi.org/10.1002/jnr.23863

Chang, W. H., Lee, I. H., Chi, M. H., Lin, S.-H., Chen, K. C., Chen, P. S., Chiu, N. T., Yao, W. J., & Yang, Y. K. (2018). Prefrontal cortex modulates the correlations between brain-derived neurotrophic factor level, serotonin, and the autonomic nervous system. Scientific Reports, 8(1), 2558. https://doi.org/10.1038/s41598-018-20923-y

Cirrik, S., & Hacioglu, G. (2016). Neurophysiological Effects of Exercise. In H. Sozen (Ed.), Fitness Medicine. InTech. https://doi.org/10.5772/64801

Clarke, H., Dhillo, W. S., & Jayasena, C. N. (2015). Comprehensive Review on kisspeptin and its role in reproductive disorders. Endocrinology and Metabolism, 30(2), 124. https://doi.org/10.3803/EnM.2015.30.2.124

Coelho, F. G. de M., Gobbi, S., Andreatto, C. A. A., Corazza, D. I., Pedroso, R. V., & Santos-Galduróz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Archives of Gerontology and Geriatrics, 56(1), 10–15. https://doi.org/10.1016/j.archger.2012.06.003

Cohen, P. G. (2001). Aromatase, adiposity, aging and disease. The hypogonadal-metabolic-atherogenic-disease and aging connection. Medical Hypotheses, 56(6), 702–708. https://doi.org/10.1054/mehy.2000.1169

Copeland, J., & Heggie, L. (2008). IGF‐I and IGFBP-3 during continuous and interval exercise. International Journal of Sports Medicine, 29(3), 182–187. https://doi.org/10.1055/s-2007-965114

Cotman, C. W., Berchtold, N. C., & Christie, L.A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. https://doi.org/10.1016/j.tins.2007.06.011

Cowansage, K. K., LeDoux, J. E., & Monfils, M.H. (2010). Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Current Molecular Pharmacology, 3, 12–29. https://doi.org/10.2174/1874467211003010012

Dinoff, A., Herrmann, N., Swardfager, W., &Lanctot, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. European Journal of Neuroscience, 46, 1635-1646. https://doi.org/10.1111/ejn.13603

Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctôt, K. L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A Meta-Analysis. PLOS ONE, 11(9), e0163037. https://doi.org/10.1371/journal.pone.0163037

El-Sayes, J., Turco, C. V., Skelly, L. E., Nicolini, C., Fahnestock, M., Gibala, M. J., & Nelson, A. J. (2019). The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience, 410, 29–40. https://doi.org/10.1016/j.neuroscience.2019.04.054

Evanson, J. R., Guyton, M. K., Oliver, D. L., Hire, J. M., Topolski, R. L., Zumbrun, S. D., McPherson, J. C., & Bojescul, J. A. (2014). Gender and age differences in growth factor concentrations from platelet-rich plasma in adults. Military Medicine, 179(7), 799–805. https://doi.org/10.7205/MILMED-D-13-00336

Ferrara, N. (2004). Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews, 25(4), 581–611. https://doi.org/10.1210/er.2003-0027

Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W., & Christoff, K. (2013). Dreaming as mind wandering: Evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience, 7, 412. https://doi.org/10.3389/fnhum.2013.00412

Fusani, L., Metzdorf, R., Hutchison, J. B., & Gahr, M. (2003). Aromatase inhibition affects testosterone-induced masculinization of song and the neural song system in female canaries. Journal of Neurobiology, 54(2), 370–379. https://doi.org/10.1002/neu.10141

Gavin, T. P., Robinson, C. B., Yeager, R. C., England, J. A., Nifong, L. W., & Hickner, R. C. (2004). Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. Journal of Applied Physiology, 96(1), 19–24. https://doi.org/10.1152/japplphysiol.00748.2003

Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934–941. https://doi.org/10.1016/j.physbeh.2011.06.005

Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., & Hoff, J. (2007). Aerobic high-intensity intervals improve vo2max more than moderate training. Medicine & Science in Sports & Exercise, 39(4), 665–671. https://doi.org/10.1249/mss.0b013e3180304570

Herbert, P., Hayes, L. D., Sculthorpe, N., & Grace, F. M. (2017). High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters’ athletes: An observational study. The Aging Male, 20(1), 54–59. https://doi.org/10.1080/13685538.2016.1260108

Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating Cortisol levels: The intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587–591. https://doi.org/10.1007/BF03345606

Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298

Hojo, Y., Hattori, T. -a., Enami, T., Furukawa, A., Suzuki, K., Ishii, H. -t., Mukai, H., Morrison, J. H., Janssen, W. G. M., Kominami, S., Harada, N., Kimoto, T., & Kawato, S. (2004). Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017 and P450 aromatase localized in neurons. Proceedings of the National Academy of Sciences, 101(3), 865–870. https://doi.org/10.1073/pnas.2630225100

Hopkins, M. E. & Bucci D.J. (2010). BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiology of Learning and Memory, 94(2), 278–284. https://doi.org/10.1016/j.nlm.2010.06.006

Hottenrott, K., Ludyga, S., & Schulze, S. (2012). Effects of high intensity training and continuous endurance training on aerobic capacity and body composition in recreationally active runners. Journal of Sports Science and Medicine, 11, 483–488.

Hötting, K., Schickert, N., Kaiser, J., Röder, B., & Schmidt-Kassow, M. (2016). the effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016, 1–12. https://doi.org/10.1155/2016/6860573

Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine, 22(1), 27. https://doi.org/10.1186/s12199-017-0643-6

Klein, A. B., Williamson, R., Santini, M. A., Clemmensen, C., Ettrup, A., Rios, M., Knudsen, G. M., & Aznar, S. (2011). Blood BDNF concentrations reflect brain-tissue BDNF levels across species. The International Journal of Neuropsychopharmacology, 14(3), 347–353. https://doi.org/10.1017/S1461145710000738

Kraus, R. M., Stallings, H. W., Yeager, R. C., & Gavin, T. P. (2004). Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. Journal of Applied Physiology, 96(4), 1445–1450. https://doi.org/10.1152/japplphysiol.01031.2003

Lee, E.-G., & Son, H. (2009). Adult hippocampal neurogenesis and related neurotrophic factors. BMB Reports, 42(5), 239–244. https://doi.org/10.5483/BMBRep.2009.42.5.239

Liu, X., Zhu, Z., Kalyani, M., Janik, J. M., & Shi, H. (2014). Effects of energy status and diet on Bdnf expression in the ventromedial hypothalamus of male and female rats. Physiology and Behavior, 130, 99–107. https://doi.org/10.1016/j.physbeh.2014.03.028

Lommatzsch, M., Braun, A., Mannsfeldt, A., Botchkarev, V. A., Botchkareva, N. V., Paus, R., Fischer, A., Lewin, G. R., & Renz, H. (1999). Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. The American Journal of Pathology, 155(4), 1183–1193. https://doi.org/10.1016/S0002-9440(10)65221-2

Lommatzsch, M., Zingler, D., Schuhbaeck, K., Schloetcke, K., Zingler, C., Schuff-Werner, P., & Virchow, J. C. (2005). The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging, 26(1), 115–123. https://doi.org/10.1016/j.neurobiolaging.2004.03.002

Maass, A., Düzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., Lövden, M., Lindenberger, U., Bäckman, L., Braun-Dullaeus, R., Ahrens, D., Heinze, H.-J., Müller, N. G., & Düzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular Psychiatry, 20(5), 585–593. https://doi.org/10.1038/mp.2014.114

Matthews, V. B., Åström, M.-B., Chan, M. H. S., Bruce, C. R., Krabbe, K. S., Prelovsek, O., Åkerström, T., Yfanti, C., Broholm, C., Mortensen, O. H., Penkowa, M., Hojman, P., Zankari, A., Watt, M. J., Bruunsgaard, H., Pedersen, B. K., & Febbraio, M. A. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 52(7), 1409–1418. https://doi.org/10.1007/s00125-009-1364-1

Mcwen, B. S., & Alves, S. E. (1999). Estrogen actions in the central nervous system. Endocrine Reviews, 20(3), 279–307. https://doi/org/10.1210/edrv.20.3.0365

Miranda, R. C., Sohrabji, F., & Toran-Allerand, C. D. (1993). Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proceedings of the National Academy of Sciences, 90(14), 6439–6443. https://doi.org/10.1073/pnas.90.14.6439

Monje, C., Rada, I., Castro-Sepulveda, M., Peñailillo, L., Deldicque, L., & Zbinden-Foncea, H. (2020). Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. Journal of Sports Science and Medicine, 19, 436–443.

Morland, C., Andersson, K. A., Haugen, Ø. P., Hadzic, A., Kleppa, L., Gille, A., Rinholm, J. E., Palibrk, V., Diget, E. H., Kennedy, L. H., Stølen, T., Hennestad, E., Moldestad, O., Cai, Y., Puchades, M., Offermanns, S., Vervaeke, K., Bjørås, M., Wisløff, U., … Bergersen, L. H. (2017). Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 8, 15557. https://doi.org/10.1038/ncomms15557

Mousavi, K., & Jasmin, B. J. (2006). BDNF Is Expressed in Skeletal Muscle Satellite Cells and Inhibits Myogenic Differentiation. The Journal of Neuroscience, 26(21), 5739–5749. https://doi.org/10.1523/JNEUROSCI.5398-05.2006

Murawska-Cialowicz, E., Wojna, J., & Zuwala-Jagiello, J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. Journal of Physiology and Pharmacology, 66(6), 811–821.

Otağ, A., Hazar, M., Otağ, İ., & Beyleroğlu, M. (2016). Effect of increasing maximal aerobic exercise on serum gonadal hormones and alpha-fetoprotein in the luteal phase of professional female soccer players. Journal of Physical Therapy Science, 28, 807–810.

Pan, W., Banks, W. A., Fasold, M. B., Bluth, J., & Kastin, A. J. (1998). Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology, 37(12), 1553–1561. https://doi.org/10.1016/S0028-3908(98)00141-5

Pedersen, B. K., Pedersen, M., Krabbe, K. S., Bruunsgaard, H., Matthews, V. B., & Febbraio, M. A. (2009). Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals: Brain-derived neurotrophic factor in metabolism. Experimental Physiology, 94(12), 1153–1160. https://doi.org/10.1113/expphysiol.2009.048561

Peeri, M., Azarbayjani, M. A., & Akbarpour, M. (2014). Effect of exercise mode and intensity of sub-maximal physical activities on growth hormone and insulin-like growth factor-1 in active young men. MedicinaDello Sport, 67, 61–73.

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise: Brain-derived neurotrophic factor release during exercise. Experimental Physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512

Reed, B. G., &Carr, B. R. (2000). The Normal Menstrual Cycle and the Control of Ovulation. In K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, K. Dungan, A. Grossman, J. M. Hershman, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, R. McLachlan, J. E. Morley, M. New, L. Perreault, J. Purnell, R. Rebar, F. Singer, D. L. Trence, … D. P. Wilson (Eds.), Endotext. MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK279054/

Scharfman, H. E., & MacLusky, N. J. (2006). Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Frontiers in Neuroendocrinology, 27(4), 415–435. https://doi.org/10.1016/j.yfrne.2006.09.004

Schmidt-Kassow, M., Schädle, S., Otterbein, S., Thiel, C., Doehring, A., Lötsch, J., & Kaiser, J. (2012). Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. NeuroReport, 23(15), 889–893. https://doi.org/10.1097/WNR.0b013e32835946ca

Schorr, M., Dichtel, L. E., Gerweck, A. V., Valera, R. D., Torriani, M., Miller, K. K., & Bredella, M. A. (2018). Sex differences in body composition and association with cardiometabolic risk. Biology of Sex Differences, 9(1), 28. https://doi.org/10.1186/s13293-018-0189-3

Schwarz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S., & Cooper, D. M. (1996). Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. Journal of Clinical Endocrinology and Metabolism, 81(10), 6.

Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46–58. https://doi.org/10.1016/j.nlm.2014.08.004

Skucas, V. A., Duffy, A. M., Harte-Hargrove, L. C., Magagna-Poveda, A., Radman, T., Chakraborty, G., Schroeder, C. E., MacLusky, N. J., & Scharfman, H. E. (2013). Testosterone depletion in adult male rats increases mossy fiber transmission, LTP, and sprouting in area CA3 of hippocampus. Journal of Neuroscience, 33(6), 2338–2355. https://doi.org/10.1523/JNEUROSCI.3857-12.2013

Snigdha, S., Neill, J. C., McLean, S. L., Shemar, G. K., Cruise, L., Shahid, M., & Henry, B. (2011). Phencyclidine (PCP)-Induced disruption in cognitive performance is gender-specific and associated with a reduction in brain-derived neurotrophic factor (BDNF) in specific regions of the female rat brain. Journal of Molecular Neuroscience, 43(3), 337–345. https://doi.org/10.1007/s12031-010-9447-5

Sohrabji, F., & Lewis, D. K. (2006). Estrogen-BDNF Interactions: implications for neurodegenerative diseases. Frontiers in Neuroendocrinology, 27(4):404-14. https://doi.org/10.1016/j.yfrne.2006.09.003

Sohrabji, F., Miranda, R. C., & Toran-Allerand, C. D. (1995). Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11110–11114. https://doi.org/10.1073%2Fpnas.92.24.11110

Staats, R., Stoll, P., Zingler, D., Virchow, J., & Lommatzsch, M. (2005). Regulation of brain-derived neurotrophic factor (BDNF) during sleep apnoea treatment. Thorax, 60(8), 688–692. https://doi.org/10.1136/thx.2004.038208

Stanford, K. I., & Goodyear, L. J. (2016). Exercise regulation of adipose tissue. Adipocyte, 5(2), 153–162. https://doi.org/10.1080/21623945.2016.1191307

Torres-Aleman, I. (2000). Serum growth factors and neuroprotective surveillance. Molecular Neurobiology, 21(3), 153–160. https://doi.org/10.1385/MN:21:3:153

Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., Ogoh, S., & Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160:26-34. https://doi.org/10.1016/j.physbeh.2016.03.029

Vega, S. R., Strüder, H. K., Wahrmann, B. V., Schmidt, A., Bloch, W., & Hollmann, W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121(1), 59-65.

Verhovshek, T., Cai, Y., Osborne, M. C., & Sengelaub, D. R. (2010). androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology, 151(1), 253–261. https://doi.org/10.1210/en.2009-1036

Vislocky, L. M., Gaine, P. C., Pikosky, M. A., Martin, W. F., & Rodriguez, N. R. (2008). Gender impacts the post-exercise substrate and endocrine response in trained runners. Journal of the International Society of Sports Nutrition, 5(1), 7. https://doi.org/10.1186/1550-2783-5-7

Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wójcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Vieira-Potter, V. J., Martin, S. A., Pence, B. D., Cook, M. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, Behavior, and Immunity, 28, 90–99. https://doi.org/10.1016/j.bbi.2012.10.021

Wahl, P., Jansen, F., Achtzehn, S., Schmitz, T., Bloch, W., Mester, J., & Werner, N. (2014). Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors. PLoS ONE, 9(4), e96024. https://doi.org/10.1371/journal.pone.0096024

Wahl, P., Zinner, C., Achtzehn, S., Bloch, W., & Mester, J. (2010). Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Hormone & IGF Research, 20(5), 380–385. https://doi.org/10.1016/j.ghir.2010.08.001

Williams, N. I., McArthur, J. W., Turnbull, B. A., Bullen, B. A., Skrinar, G. S., Beltins, I. Z., Besser, G. M., Rees, L. H., Gilbert, I., Cramer, D., Perry, L., & Tunstall Pedoe, D. S. (1994). Effects of follicular phase exercise on luteinizing hormone pulse characteristics in sedentary eumenorrhoeic women. Clinical Endocrinology, 41(6), 787–794. https://doi.org/10.1111/j.1365-2265.1994.tb02794.x

Zhang, Y., Wang, S.-F., Zheng, J.-D., Zhao, C.-B., Zhang, Y.-N., Liu, L.-L., & Huang, J.-H. (2016). Effects of testosterone on the expression levels of AMH, VEGF and HIF-1α in mouse granulosa cells. Experimental and Therapeutic Medicine, 12(2), 883–888. https://doi.org/10.3892/etm.2016.3436

Downloads

Published

2022-06-26

How to Cite

Khandekar, P., Shenoy, S., & Sathe, A. (2022). The effect of an acute bout of high intensity intermittent exercise on neural growth factors in young adults: Sex differences. Neuroscience Research Notes, 5(2), 146. https://doi.org/10.31117/neuroscirn.v5i2.146