Analysing the role of Saraswatarishta in the treatment of neurological disorders based on network pharmacology

Authors

  • Vrinda Jethalia Department of Biotechnology, PES University, Karnataka, India.
  • Sanjana Varada Hasyagar Department of Biotechnology, PES University, Karnataka, India.
  • Kasturi Bhamidipati Department of Biotechnology, PES University, Karnataka, India.
  • Jhinuk Chatterjee Department of Biotechnology, PES University, Karnataka, India. https://orcid.org/0000-0003-1193-5488

DOI:

https://doi.org/10.31117/neuroscirn.v3i5.106

Keywords:

Saraswatarishta, Network pharmacology, ayurveda, Phytoconstituents, SWRT, PPI

Abstract

Ayurvedic medications originated centuries ago and are still prevalent today. Saraswatarishta (SWRT) is a well-known ayurvedic formulation that is often prescribed to control the manifestations of neurological illnesses and disorders such as slurred speech, anxiety, Parkinson's disease (PD) and Alzheimer's disease(AD). However, scientific research on its mode of action has not been studied extensively. Therefore, this study employs network pharmacology to understand better the neuroprotective role of Saraswatarishta (SWRT) in neurological disorders. Out of the 18 ingredients in SWRT, five were considered in this study due to their elevated therapeutic action in neurological disorders. Further, nine active phytoconstituents were chosen from the five selected ingredients. The gene targets of the active phytoconstituents were screened and selected using STITCH, SwissTargetPrediction and ChEMBL. Protein-Protein interaction and Gene Ontology (GO) enrichment analysis were carried out using STRING and g:Profiler, respectively. Cytoscape 3.7.2 was used to create three networks-the compound-target, the target-disease and the compound-target-disease network. Molinspiration and admetSAR2.0 were used to obtain the bioactivity scores and the blood-brain barrier (BBB) probability scores. The three networks indicated that all nine phytoconstituents were linked to the gene targets that encode proteins involved in the pathways of 10 major neurological disorders. This includes Parkinson's disease (PD), Alzheimer's disease (AD), dementia, Huntington disease, epilepsy, schizophrenia, spinocerebellar ataxia, amyotrophic lateral sclerosis (ALS), multiple sclerosis and attention deficit hyperactivity disorder (ADHD).  The gene targets were expressed significantly in various central nervous system regions such as the cerebral cortex, cerebellum and amygdala. The bioactivity scores of the phytoconstituents were in the active range along with high BBB probability scores, indicating that the phytoconstituents can potentially cross the BBB and impart therapeutic effects.

References

Abdul Manap, A. S., Vijayabalan, S., Madhavan, P., Chia, Y. Y., Arya, A., Wong, E. H., Rizwan, F., Bindal, U., & Koshy, S. (2019). Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights, 13, 1177392819866412. https://doi.org/10.1177/1177392819866412

Abu-Taweel G. M. (2018). Cardamom (Elettaria cardamomum) perinatal exposure effects on the development, behavior and biochemical parameters in mice offspring. Saudi Journal of Biological Sciences, 25(1), 186–193. https://doi.org/10.1016/j.sjbs.2017.08.012

Aguiar, S., & Borowski, T. (2013). Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Research, 16(4), 313–326. https://doi.org/10.1089/rej.2013.1431

Baitharu, I., Jain, V., Deep, S. N., Shroff, S., Sahu, J. K., Naik, P. K., & Ilavazhagan, G. (2014). Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia. PLoS ONE, 9(10), e105311. https://doi.org/10.1371/journal.pone.0105311

Batiha, G. E., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., & Rashwan, E. K. (2020). Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 10(2), 202. https://doi.org/10.3390/biom10020202

Burguillos, M. A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., Cano, J., Brundin, P., Englund, E., Venero, J. L., & Joseph, B. (2011). Caspase signalling controls microglia activation and neurotoxicity. Nature, 472(7343), 319–324. https://doi.org/10.1038/nature09788

Chandran, U., Mehendale, N., Tillu, G., & Patwardhan, B. (2015). Network Pharmacology: An Emerging Technique for Natural Product Drug Discovery and Scientific Research on Ayurveda. Proceedings of the Indian Academy of Sciences, 81, 8. https://doi.org/10.16943/ptinsa/2015/v81i3/48229

Chaudhari, K. S., Tiwari, N. R., Tiwari, R. R., & Sharma, R. S. (2017). Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer's Disease. Annals of neurosciences, 24(2), 111–122. https://doi.org/10.1159/000475900

Chu, J., & Praticò, D. (2011). 5-lipoxygenase as an endogenous modulator of amyloid β formation in vivo. Annals of Neurology, 69(1), 34–46. https://doi.org/10.1002/ana.22234

Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382

Du, Y., Zhao, Y., Li, C., Zheng, Q., Tian, J., Li, Z., Huang, T. Y., Zhang, W., & Xu, H. (2018). Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes. Journal of Experimental Medicine, 215(6),1665–1677. https://doi.org/10.1084/jem.20171193

Dubey, K., Anand, B., Shekhawat, D., & Kar, K. (2017). Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Scientific Reports, 7, 40744. https://doi.org/10.1038/srep40744

Duda, P., Wiśniewski, J., Wójtowicz, T., Wójcicka, O., Jaśkiewicz, M., Drulis-Fajdasz, D., Rakus, D., McCubrey, J. A., & Gizak, A. (2018). Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opinion on Therapeutic targets, 22(10), 833–848. https://doi.org/10.1080/14728222.2018.1526925

Duyu, T., Khanal, P., Dey, Y.N., & Jha, S. (2021).Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases. Advances in Traditional Medicine, 21, 565–578. https://doi.org/10.1007/s13596-020-00530-x

Gadgil, V. D. (2010). Understanding ayurveda. Journal of Ayurveda and Integrative Medicine, 1(1), 77–80. https://doi.org/10.4103/0975-9476.59836

Galal, A. A. A., & Abdellatief, S. A. (2015). Neuropharmacological studies on Syzygium aromaticum (clove) essential oil. International Journal of Pharma Sciences, 5(2): 1013-1018.

Gazova, Z., Soukup, O., Sepsova, V., Siposova, K., Drtinova, L., Jost, P., Spilovska, K., Korabecny, J., Nepovimova, E., Fedunova, D., Horak, M., Kaniakova, M., Wang, Z. J., Hamouda, A. K., & Kuca, K. (2016). Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochimica et Biophysica acta. Molecular Basis of Disease. 1863(2), 607-619. https://doi.org/10.1016/j.bbadis.2016.11.020

Gordon, R., Singh, N., Lawana, V., Ghosh, A., Harischandra, D. S., Jin, H., Hogan, C., Sarkar, S., Rokad, D., Panicker, N., Anantharam, V., Kanthasamy, A. G., & Kanthasamy, A. (2016). Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiology of Disease, 93, 96–114. https://doi.org/10.1016/j.nbd.2016.04.008

Gorman A. M. (2008). Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. Journal of Cellular and Molecular Medicine, 12(6A), 2263–2280. https://doi.org/10.1111/j.1582-4934.2008.00402.x

Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S., & Kim, S. Y. (2012). 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology, 63(2), 211–223. https://doi.org/10.1016/j.neuropharm.2012.03.016

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 33(Database issue), D514–D517. https://doi.org/10.1093/nar/gki033

Ho, K. W., Ward, N. J., & Calkins, D. J. (2012). TRPV1: a stress response protein in the central nervous system. American Journal of Neurodegenerative Disease, 1(1), 1–14.

Ho, S. C., Chang, K. S., & Lin, C. C. (2013). Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chemistry, 141(3), 3183–3191. https://doi.org/10.1016/j.foodchem.2013.06.010

Iwama, K., Osaka, H., Ikeda, T., Mitsuhashi, S., Miyatake, S., Takata, A., Miyake, N., Ito, S., Mizuguchi, T., & Matsumoto, N. (2018). A novel SLC9A1 mutation causes cerebellar ataxia. Journal of Human Genetics, 63(10), 1049–1054. https://doi.org/10.1038/s10038-018-0488-x

Jeyasri, R., Muthuramalingam, P., Suba, V., Ramesh, M., & Chen, J. T. (2020). Bacopa monnieri and Their Bioactive Compounds Inferred Multi-Target Treatment Strategy for Neurological Diseases: A Cheminformatics and System Pharmacology Approach. Biomolecules, 10(4), 536. https://doi.org/10.3390/biom10040536

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971

Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J., & Bork, P. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Research, 36(Database issue), D684–D688. https://doi.org/10.1093/nar/gkm795

Kumar, A., Tiwari, A., & Sharma, A. (2018). Changing paradigm from one target one ligand towards multi-target directed ligand design for key drug targets of Alzheimer disease: An important role of in silico methods in multi-target directed ligands design. Current Neuropharmacology, 16(6), 726–739. https://doi.org/10.2174/1570159X16666180315141643

Kumar, V., Dey, A., Hadimani, M.B., Marcovic, T., & Emerald, M. (2015). Chemistry and pharmacology of Withania somnifera: An update. Tang, 5(1), 1.1-1.13. https://doi.org/10.5667/TANG.2014.0030

Lei, P., Ayton, S., Bush, A. I., & Adlard, P. A. (2011). GSK-3 in Neurodegenerative Diseases. International Journal of Alzheimer's Disease, 2011, 189246. https://doi.org/10.4061/2011/189246

Liu, Y., Liu, J., & Zhang, Y. (2019). Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Research International, 2019, 5370823. https://doi.org/10.1155/2019/5370823

Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185. https://doi.org/10.3390/foods8060185

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., … Leach, A. R. (2019). ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075

Parekar, R. R., Jadhav, K. S., Marathe, P. A., & Rege, N. N. (2014). Effect of Saraswatarishta in animal models of behavior despair. Journal of Ayurveda and Integrative Medicine, 5(3), 141–147. https://doi.org/10.4103/0975-9476.140469

Park, G., Kim, H. G., Ju, M. S., Ha, S. K., Park, Y., Kim, S. Y., & Oh, M. S. (2013). 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacologica Sinica, 34(9), 1131–1139. https://doi.org/10.1038/aps.2013.57

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., & Furlong, L. I. (2017). DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Research, 45(D1), D833–D839. https://doi.org/10.1093/nar/gkw943

Prabhu, J., Jayakumari, S., Prabhu, K., Kumar, J.A., Subramanian, M., & Kavimani. (2019). Saraswatarishta reverses neuronal injury in brain tissues of scopolamine-induced rat model. Journal of Anatomical Society of India, 68(4), 269-273. https:/doi.org/10.4103/JASI.JASI_45_19

Prabhu, J., Prabhu, K., Chaudhuri, A., Rao, M. R. K., Kalai Selvi, V. S., Balaji, T. K., & Dinakar, S. (2020). Neuro-protective effect of ayurveda formulation, saraswatharishtam, on scopolamine induced memory impairment in animal model. Pharmacognosy Journal, 12(1), 6–13. https://doi.org/10.5530/pj.2020.12.2

Rajopadhye, D. R., & Sahasrabudhe, A. R. (2020). Memory enhancing activity of Saraswatarishta in mice. Biomedical and Pharmacology Journal, 13(4). https://dx.doi.org/10.13005/bpj/2082

Ram, N., Peak, S. L., Perez, A. R., & Jinwal, U. K. (2021). Implications of Withaferin A in neurological disorders. Neural Regeneration Research, 16(2), 304–305. https://doi.org/10.4103/1673-5374.290894

Ramasamy, S., Chin, S. P., Sukumaran, S. D., Buckle, M. J. C., Kiew, L. V., & Chung, L. Y. (2015) In silico and in vitro analysis of bacoside a aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS ONE, 10(5): e0126565. https://doi.org/10.1371/journal.pone.0126565

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. https://doi.org/10.1093/nar/gkz369

Rawat, C., Kutum, R., Kukal, S., Srivastava, A., Dahiya, U. R., Kushwaha, S., Sharma, S., Dash, D., Saso, L., Srivastava, A. K., & Kukreti, R. (2020). Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Scientific Reports, 10(1), 2546. https://doi.org/10.1038/s41598-020-59259-x

Ryu, S., Park, H., Seol, G. H., & Choi, I. Y. (2014). 1,8-Cineole ameliorates oxygen-glucose deprivation/ reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia. The Journal of Pharmacy and Pharmacology, 66(12), 1818–1826. https://doi.org/10.1111/jphp.12295

Safran, M., Solomon, I., Shmueli, O., Lapidot, M., Shen-Orr, S., Adato, A., Ben-Dor, U., Esterman, N., Rosen, N., Peter, I., Olender, T., Chalifa-Caspi, V., & Lancet, D. (2002). GeneCards 2002: towards a complete, object-oriented, human gene compendium. Bioinformatics, 18(11), 1542–1543. https://doi.org/10.1093/bioinformatics/18.11.1542

Samad, T. A., Moore, K. A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J. V., & Woolf, C. J. (2001). Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410(6827), 471–475. https://doi.org/10.1038/35068566

Sánchez, I., Xu, C. J., Juo, P., Kakizaka, A., Blenis, J., & Yuan, J. (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron, 22(3), 623–633. https://doi.org/10.1016/s0896-6273(00)80716-3

Saroya A.S., & Singh J. (2018) Neuropharmacology of Withania somnifera Dunal.. In: Pharmacotherapeutic Potential of Natural Products in Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-0289-3_16

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303

Shastri, RV., (Eds). (2002). Atha Vajikaranaprakaranam. Bhaisajyaratnavali, Vidyotini – Hindivyakhya – Vimarsh-Parishishtasahita. Varanasi: Chaukhamba Sanskrit Bhavan. 796-797.

Storozhuk, M. V., Moroz, O. F., & Zholos, A. V. (2019). Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral systems. BioMed Research International, 2019, 5806321. https://doi.org/10.1155/2019/5806321

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J ., & Christian, v. M. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131

Viveros-Paredes, J. M., González-Castañeda, R. E., Gertsch, J., Chaparro-Huerta, V., López-Roa, R. I., Vázquez-Valls, E., Beas-Zarate, C., Camins-Espuny, A., & Flores-Soto, M. E. (2017). Neuroprotective effects of β-caryophyllene against dopaminergic neuron injury in a murine model of Parkinson's disease induced by MPTP. Pharmaceuticals, 10(3), 60. https://doi.org/10.3390/ph10030060

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimisation of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707

Zheng, X. B., Zhang, Y. L., Li, Q., Liu, Y. G., Wang, X. D., Yang, B. L., Zhu, G. C., Zhou, C. F., Gao, Y., & Liu, Z. X. (2019). Effects of 1,8-cineole on neuropathic pain mediated by P2X2 receptor in the spinal cord dorsal horn. Scientific Reports, 9, 7909. https://doi.org/10.1038/s41598-019-44282-4

Zhu, J., Park, S., Jeong, K. H., & Kim, W. J. (2020). Withanolide-A treatment exerts a neuroprotective effect via inhibiting neuroinflammation in the hippocampus after pilocarpine-induced status epilepticus. Epilepsy Research, 165, 106394. https://doi.org/10.1016/j.eplepsyres.2020.106394

Downloads

Published

2021-09-18

How to Cite

Jethalia, V., Hasyagar, S. V., Bhamidipati, K., & Chatterjee, J. (2021). Analysing the role of Saraswatarishta in the treatment of neurological disorders based on network pharmacology. Neuroscience Research Notes, 3(5), 23–35. https://doi.org/10.31117/neuroscirn.v3i5.106