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Abstract: Consequences of chronic ethanol exposure on cognitive and motor functions are widely 
studied due to the neurodegeneration that ethanol produces in the cerebellum and other brain 
areas, including some corticolimbic regions. However, there is scarce information about the 
structural neuroplasticity effects of chronic ethanol exposure that ultimately lead to characteristic 
neurodegenerative consequences. For this purpose, we evaluated the effects of chronic ethanol 
exposure in adult male rats on exploratory behavior (locomotor activity induced by a novel 
environment) and structural neuroplasticity in corticolimbic and cerebellar neurons. After 90 days 
of ad libitum ethanol (10%) exposure, the locomotor behavior of the animals did not differ from 
that of the control group (exposed to water). Structural neuroplasticity was assessed using the 
Golgi-Cox technique in neurons from corticolimbic areas and the cerebellum. The findings revealed 
that ethanol exposure induced basilar dendritic atrophy without modifying the dendritic spine 
density in pyramidal cells in prefrontal cortex layers 3 and 5, the CA1 region of the dorsal 
hippocampus, and the basolateral amygdala. In contrast, ethanol exposure hypotrophied the 
dendritic arbor of Purkinje cells and reduced the density of dendritic spines in these cells. These 
data contribute to the knowledge of the neuroplasticity-related mechanisms underlying the 
neurodegenerative consequences of chronic ethanol exposure and its cognitive implications. 
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1.0  INTRODUCTION 
Ethanol is an ancient psychostimulant widely used in 
societies worldwide. When abused, it can lead to a 
chronic consumption disorder described as alcohol use 
disorder (AUD). According to the World Health 
Organization (WHO), AUD is a causal factor for 
numerous diseases, including mental issues and non-
communicable diseases like liver cirrhosis and certain 
cancers (Roerecke & Rehm, 2014). One of the most well-
documented organs damaged in AUD is the brain, as 
ethanol easily crosses the blood-brain barrier (BBB) and 
impacts various neurotransmission systems (glutamate, 
GABA, dopamine, serotonin, acetylcholine, etc.), 
leading to cognitive and motor dysfunctions (Rao & 
Topiwala, 2020). It is worth mentioning that alcohol has 
a biphasic effect: at low doses (blood alcohol 
concentration, BAC = <100 mg/dL), it has a 
psychostimulant effect, and there are even reports of 
benefits from its consumption. However, at high doses 
(toxic doses, BAC = >300 mg/dL), it is considered a 
depressant (Tizabi et al., 2018). 
 
The main mechanism of action of ethanol in the brain is 
due to its GABAergic agonism. When it acts on GABAA 
receptors in the cerebellum and amygdala, it results in 
motor incoordination, anxiolytic effects, and changes in 
mood (Roberto et al., 2012; Rossi & Richardson, 2018). 
GABAA receptor activity produces Cl- ion influx, 
hyperpolarizing nerve cells, and reducing excitability, 
explaining the anxiolytic effect (Davies, 2003). These 
effects are evident in GABAergic structures such as the 
cerebellum, in which impaired function and atrophy are 
common in AUD patients, and underlie the 
neurobiology of motor dysfunction in the disorder 
(Mitoma et al., 2021). But beyond the cerebellum, other 
brain structures can be structurally and functionally 
damaged in AUD, as the GABAergic ethanol effects can 
impair excitatory neurotransmission, mainly through 
the alteration of inhibitory interneuron activity in 
cortical areas (Hughes et al., 2020; Joffe et al., 2021). 
 
The mechanism of action of ethanol is complex, as it 
alters different proteins and receptors. Ethanol inhibits 
the function of the NMDA glutamatergic receptor at 
both low and high doses. On the other hand, ethanol is 
an agonist of glycine receptors, acetylcholine receptors 
(nAChR), and serotonin 5-HT-3 receptors. The latter, 
although known as an excitatory receptor, is usually 
expressed in GABAergic interneurons. Therefore, its 
activation by ethanol contributes to the well-known 
inhibitory actions of alcohol at high doses (Vengeliene 
et al., 2008). 
 

Preclinical (Dahchour & De Witte, 2003) and clinical 
studies (Tsai et al., 1998) have demonstrated that the 
excitatory/inhibitory imbalance in corticolimbic regions 
contributes to dependence, tolerance, and withdrawal 
symptoms due to ethanol exposure. Moreover, both in 
AUD patients and rodents, ethanol exposure increases 
NMDA receptor expression in multiple regions, 
including the hippocampus and cerebellum (den Hartog 
et al., 2017; Hoffman & Tabakoff, 1994; Mira et al., 
2019), which also contributes to the 
excitatory/inhibitory imbalance beyond its GABAergic 
mechanisms. Also, glutamatergic activity leads to 
excitotoxicity, causing neuronal death, and ultimately to 
atrophy or volume reduction in multiple brain areas, 
which has been reported in AUD patients (Daviet et al., 
2022; Fama et al., 2021; Mechtcheriakov et al., 2007; 
Sullivan & Pfefferbaum, 2023).  
 
One study revealed that, after chronic intermittent 
ethanol exposure, the neurons of layer 5 prefrontal 
cortex (PFC) exhibit impaired excitability without a 
modification in dendritic spine density (Kroener et al., 
2012). This is interesting because dendritic spines 
represent the main site of postsynaptic glutamatergic 
neurotransmission, with more than 90% of this 
phenomenon occurring in these structures. Moreover, 
the PFC has reciprocal glutamatergic connections with 
the hippocampus and the basolateral amygdala (BLA), 
and this circuit plays a role in limbic-related functions 
such as decision-making, learning, memory, and 
stimulus/reward-directed behavior (Reyes-Lizaola et al., 
2024). All of the aforementioned behaviors are 
impaired in people with AUD (Bailey et al., 2018; Logge 
et al., 2023), making the study of ethanol effects on the 
structural neuroplasticity of corticolimbic regions 
relevant. 
 
In this study, the effects of chronic ad libitum ethanol 
exposure on behavior, specifically locomotor activity, as 
well as on the structural neuroplasticity of pyramidal 
neurons in the corticolimbic system, including the PFC, 
the hippocampus, the BLA, and Purkinje cells in the 
cerebellum, were evaluated. 
 
2.0  MATERIALS AND METHODS 
2.1  Experimental design 
Male Sprague-Dawley rats, 60 days of age (considering 
birth as day 0) and weighing between 250–300 g at the 
beginning of the experiment, were obtained from the 
Claude Bernard Animal Facility at Benemérita 
Universidad Autónoma de Puebla. They were housed in 
a controlled environment at 18–23°C and 50–60% 
humidity, with 12-hour light/dark cycles (lights on at 
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8:00 am), and were kept in acrylic cages with free access 
to Lab Diet MR 5008 food. All protocols described in this 
study were approved by the Institutional Animal Care 
Committee (100235377-UALVIEP-24/1) and adhered to 
the technical specifications for the Production, Care, 
and Use of Laboratory Animals in Mexico (NOM-062-
ZOO-1999) and the ARRIVE (Animal Research: Reporting 
of in vivo Experiments) guidelines. 
 
Two experimental groups of 10 animals were formed 
and categorized as the control group (with ad libitum 
access to water) and the ethanol group (with ad libitum 
access to 10% ethanol in water, diluted from 96% 
ethanol) for 90 days. The dose and duration of ethanol 
exposure were selected based on several 
considerations.  
 
First, multiple studies have reported behavioral 
disturbances, including cognitive impairment, following 
chronic exposure (more than six weeks in adults) to 10% 
ethanol in rodents (Eisenhardt et al., 2015; Martinez et 
al., 2016; Mormede, 2004). Second, a 10% ethanol 
solution is considered a low dose due to its biochemical 
effects on hepatic and mitochondrial function, as well as 
on the mesolimbic dopaminergic pathway (Aguiar et al., 
2009; Jin et al., 2023; Lograno et al., 1993; Puzziferri et 
al., 2000). Third, this concentration is capable of 
producing a BAC in the range of 80–100 mg/dL in 
voluntary consumption protocols (Fadda et al., 1999). 
Finally, rats chronically exposed to 10% ethanol as a sole 
source of fluid (Aguiar et al., 2009) exhibit structural 
changes in different brain areas that may be associated 
with deficits in various cognitive and behavioral 
functions (Han et al., 2020). Furthermore, animals were 
weighed before the ethanol exposure period (control 
group: 244 ± 13.5 g; chronic ethanol exposure group: 
267 ± 15.8 g) and at the end of the 90-day intake period 
(control group: 355 ± 19 g; chronic ethanol exposure 
group: 383 ± 17 g). Following the exposure period, 
behavioral assessments were conducted, and brain 
samples were collected (Figure 1A).  
 

2.2  Behavioral test 

Twenty-four hours after the 90-day exposure to either 
ethanol or water, the animals’ locomotor activity in 
response to a novel environment was evaluated. For 
this purpose, individual cages (20 x 40 x 30 cm) 
equipped with 8 pairs of photo-beam detectors on the 
lateral walls and connected to a computer counter 
(Tecnología Digital, Mexico) were used. Each rat was 
placed in an activity cage for 60 minutes, and the 
number of counts (photo-beam interruptions) was 
recorded (Morales-Medina et al., 2008; Tendilla-Beltrán 

et al., 2016). Immediately after the end of the 
behavioral test, the rats were euthanized with a sodium 
pentobarbital overdose (75 mg/kg, i.p.), underwent 
intracardiac perfusion with a saline solution, and the 
brains were extracted. 
 

2.3  Golgi-Cox stain 

The extracted brains were placed in Golgi-Cox solution 
and stored in darkness for 30 days. After this period, the 
Golgi-Cox solution was replaced with a 30% sucrose 
solution for seven days before brain sectioning. Coronal 
brain tissue sections and sagittal cerebellar sections 
(200 μm thickness) were made using a motorized 
manual vibratome (Campden Instrument, MA752, 
Leicester, UK). The sections were mounted on slides 
that had been coated with 2% gelatin. Subsequently, the 
tissues were hydrated and revealed according to the 
following procedure: the slides were dipped in 
ammonium hydroxide (50% in water) for 30 minutes, 
rinsed with distilled water for 1 minute, dipped in Kodak 
Rapid Fixer (1:3 in water) for 30 minutes, rinsed with 
distilled water for 1 minute, dehydrated with increasing 
concentrations of ethanol (70% for 1 minute, 95% for 1 
minute, 100% for 5 minutes twice), and then cleared in 
xylene for 15 minutes. Finally, the slides were mounted 
with synthetic resin for microscopy (Coatl-Cuaya et al., 
2022; Gibb & Kolb, 1998; Silva-Gómez et al., 2003).  
 

2.4  Neuronal and dendrite reconstructions 

Neuronal and dendrite reconstructions were conducted 
based on the references from “The Rat Brain in 
Stereotaxic Coordinates” atlas (Paxinos and Watson, 
1998). Pyramidal neurons from the medial prefrontal 
cortex (mPFC) layers 3 and 5, the basolateral amygdala 
(BLA), and the CA1 region of the dorsal hippocampus, as 
well as Purkinje cells from the cerebellar region, were 
identified in the animals. Ten isolated and well-
impregnated neurons from each region (5 from each 
hemisphere) were traced for each brain using an optical 
microscope attached to a camera lucida (40X). 
Additionally, a portion of the distal dendrite (with a 
minimum length of 30 μm) was traced from the same 
neurons, with a magnification of 100X for dendritic 
spine quantification (Alcantara-Gonzalez et al., 2010; 
Silva-Gómez et al., 2003; Tendilla-Beltrán et al., 2016). 
 

2.5  Sholl analysis and dendritic spine quantification 

For each neuronal reconstruction, each dendrite's order 
was differentiated by color, labeled as first (emerging 
from the soma), second (bifurcated from the first), third, 
and up to the 'n' order. Differentiated neuronal 
reconstructions were analyzed using the Sholl method 
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(Sholl, 1953), employing a template of concentric circles 
spaced 10 μm apart. The intersections between 
dendrites and circles were then counted, and 3 
morphometric parameters were estimated: the 
complexity of the dendritic arbor from soma (dendritic 
arbor length by its distance to the soma), the length per 
dendritic order, and the total dendritic length (Silva-
Gómez et al., 2003; Tendilla-Beltrán et al., 2016). 
Additionally, to determine the density of dendritic 
spines, in the reproduced dendritic segments, the 
average number of dendritic spines within three 
segments of 10 μm each was calculated (Flores et al., 
2005; Tendilla-Beltrán et al., 2019). 
 

2.6  Statistical analysis 

The data are expressed as mean ± SEM, and individual 
values are shown in the figures. The data on total 
locomotor activity, total dendritic length, and dendritic 
spine density were analyzed with Student t-test. Data on 
locomotor activity for every 10 minutes were analyzed 
using two-way repeated-measures ANOVA, with 
periods and ethanol exposure as independent variables. 
Data on arborization and length per dendritic order 

were analyzed using two-way ANOVA, with distance to 
soma and dendritic order, respectively, as independent 
factors, depending on the case. In some cases, ethanol 
exposure was considered the other independent factor. 
If a significant interaction was detected, a Bonferroni 
test for post hoc analysis was performed. All results 
were considered significant at a p-value of <0.05. These 
analyses were conducted using the GraphPad PRISM 9.0 
software. 
 
3.0  RESULTS 
3.1  Chronic ethanol exposure did not modify 
exploratory activity in the open field test 
After 90 days of ethanol exposure, locomotor activity in 
response to a novel environment was evaluated in the 
animals. Animals chronically exposed to ethanol did not 
exhibit differences in their locomotion behavior at any 
of the 10-minute intervals analyzed compared with the 
control group (time x ethanol: F(5,90) = 1.133, 
p=0.3489; Figure 1B). Additionally, when total 
locomotor activity over 60 minutes was analyzed, there 
was no difference between groups (t(18) = 0.7917, 
p=0.4388; Figure 1C). 

 
 

 
 

Figure 1: Experimental design (A) and behavioral tests (B-C). (B) Temporal profile: during each of the 6 periods of 10 minutes, 
the number of counts did not change between control and ethanol-exposed rats. (C) Accumulated activity: the total number 
of movements during the 60 minutes of the test did not change between groups. BLA=basolateral amygdala; DH CA1=CA1 
region of the dorsal hippocampus; PFC-3=prefrontal cortex layer 3; PFC-5=prefrontal cortex layer 5. Panel A of the figure was 
created with BioRender.com. 
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3.2  Chronic ethanol exposure leads to atrophy of the 
basilar dendritic arbor in mPFC pyramidal neurons 
without affecting the dendritic spine density 
Some samples were excluded because the staining 
quality did not allow for a clear observation of the 
neural structures of interest, especially the dendritic 
spines. Only the brains in which 10 neurons were found 
from each of the regions of interest with the 
aforementioned characteristics, were included in the 
study. Because of this, the sample size for structural 
neuroplasticity assessments is n = 5–6 animals per 
group. Chronic ethanol exposure produced similar 
effects in the pyramidal neurons of PFC layers 3 and 5, 
reducing the length of the basilar dendritic arbor 
without affecting the dendritic spine density. 
 
Regarding mPFC neurons, in layer 3 (Figure 2A-B), 
ethanol reduced the arborization of the neurons in 
distal segments: from 90 to 160 μm from the soma 
(ethanol x distance to soma: F(29,270) = 2.492, 
p<0.0001; post hoc: p<0.05; Figure 2C). Furthermore, 
ethanol reduced the length of dendritic orders as a main 
effect (ethanol x dendritic order: F(7,72) = 1.204, 
p=0.3120; ethanol: F(1,72) = 15.08, p=0.0002; Figure 
2D). This was confirmed by the reduction of the total 
dendritic length, as animals chronically exposed to 
ethanol showed a decrease in this parameter compared 
to control rats (t(9) = 2.809, p=0.0204; Figure 2E). 
However, ethanol consumption did not modify the 
dendritic spine density in distal segments of these 
neurons (t(9) = 0.1898, p=0.8537; Figure 2F). In mPFC 
layer 5 pyramidal neurons (Figure 2G-H), the chronic 
ethanol exposure reduced the basilar arborization in 
both proximal and distal segments: from 50 to 180 μm 
from the soma (ethanol x distance to soma: F(29,270) = 
10.23, p<0.0001, post hoc: p<0.05; Figure 2I). 
Moreover, ethanol reduced the length of the third 
dendritic order in these neurons (ethanol x dendritic 
order: F(7,72) = 6.594, p<0.0001, post hoc: p<0.001; 
Figure 2J). Also, ethanol reduced the total dendritic 
length of the basilar arbor of these cells (t(9) = 5.208, 
p=0.0006; Figure 2K), without affecting the dendritic 
spine density (t(9) = 0.4147, p=0.6881; Figure 2L). 
 
3.3  Chronic ethanol exposure causes basilar dendritic 
arbor atrophy in dorsal hippocampus pyramidal 
neurons without affecting dendritic spine density 
In the CA1 region of the dorsal hippocampus (Figure 3A-
B), chronic ethanol exposure drastically reduced the 
arborization of the pyramidal cells almost throughout 
the entire basilar portion: from 30 to 190 μm from the 
soma (ethanol x distance to soma: F(29,270) = 11.90, 
p<0.0001, post hoc: p<0.05; ethanol: F(1,270) = 516.6, 

p<0.0001; Figure 3C). Additionally, ethanol reduced the 
length of the fourth and fifth dendritic orders in these 
cells (ethanol x dendritic order: F(8,81) = 4.600, 
p=0.0001, post hoc: p<0.0001; ethanol: F(1,81) = 36.71, 
p<0.0001; Figure 3D). The reduction in arborization and 
dendritic order lengths impacted the total dendritic 
length (basilar portion) of these neurons by reducing it 
in comparison with the control group (t(9) = 15.70, 
p<0.0001; Figure 3E). Interestingly, dendritic spine 
density remains unchanged due to ethanol exposure in 
these cells (t(9) = 0.8408, p=0.4223; Figure 3F), 
consistent with findings in the PFC pyramidal neurons. 
 
3.4  Chronic ethanol exposure leads to atrophy of the 
basilar dendritic arbor in BLA pyramidal cells without 
affecting dendritic spine density 
In BLA pyramidal cells (Figure 3G-H), chronic ethanol 
exposure induced a general reduction of the basilar 
dendritic arbor of these neurons from 30 to 170 μm 
from the soma (ethanol x distance to soma: F(29,240) = 
5.694, p<0.0001, post hoc: p<0.05; ethanol: F(1,240) = 
258.9, p<0.0001; Figure 3I). Additionally, ethanol 
reduced the length of the third dendritic order (ethanol 
x dendritic order: F(8,72) = 2.942, p=0.0067, post hoc: 
p<0.0001; ethanol: F(1,72) = 18.92, p<0.0001; Figure 
3J). When the total dendritic length of the basilar arbor 
of these neurons was analyzed, ethanol was found to 
reduce it (t(8) = 3.566, p=0.0073; Figure 3K). Finally, as 
found in the PFC and hippocampus, chronic ethanol 
exposure did not modify the dendritic spine density in 
the distal basilar dendrites of the BLA pyramidal 
neurons (t(8) = 0.7932, p=0.4506; Figure 3L). 
 
3.5  Chronic ethanol exposure leads to dendritic arbor 
atrophy and a reduction in the dendritic spine density 
in the cerebellar Purkinje cells 
In cerebellar Purkinje cells (Figure 4A-B), chronic 
ethanol exposure led to a reduction in arborization in 
specific segments of the neurons (ethanol x distance to 
soma: F(34,280) = 2.553, p<0.0001; ethanol: F(1,280) = 
166.7, p<0.0001; Figure 4C), including segments from 70 
to 90 μm and from 130 to 170 μm from the soma (post 
hoc: p<0.05). The analysis per dendritic order revealed 
a reduction in the length of distal orders from the 
thirteenth to the twentieth (ethanol x dendritic order: 
F(29,240) = 4.443, p<0.0001, post hoc: p<0.05; ethanol: 
F(1,240) = 82.75, p<0.0001; Figure 4D). Moreover, 
ethanol reduced the total dendritic length of these 
neurons in comparison with the control group (t(8) = 
3.796, p=0.0053; Figure 4E). Notably, in these 
GABAergic cells, chronic ethanol exposure induced a 
reduction in the dendritic spine density in the distal 
dendrites (t(8) = 5.562, p=0.0005; Figure 4F).
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Figure 2: Structural neuroplasticity of the mPFC pyramidal neurons in layer 3 (A-F) and layer 5 (G-L). (A) Photomicrograph of 
mPFC layer 3 pyramidal neuron. (B) Representative neuronal reconstructions of mPFC layer 3 pyramidal neurons of control and 
ethanol groups (scale bar = 100 μm). Temporal profile. (C) Arborization. Ethanol reduced the arborization of these neurons in 
distal segments, from 90 to 160 μm from the soma [ethanol x distance to soma: F(29,270) = 2.492, p<0.0001; post hoc: #p<0.05 
for 90 and 160 μm, p<0.01 for 90, 100, and 150 μm, p<0.001 for 120 and 140 μm, p<0.0001 for 130 μm]. (D) Length per dendritic 
order. Ethanol reduced the length of dendritic orders as a main effect [ethanol F(1,72) = 15.08, p=0.0002]. (E) Total dendritic 
length. In animals chronically exposed to ethanol, the total dendritic length of these neurons was reduced compared to the 
control rats [t(9) = 2.809, p=0.0204]. (F) Dendritic spine density. Ethanol consumption did not modify the number of dendritic 
spines in distal segments of these neurons. (G) Photomicrograph of mPFC layer 5 pyramidal neuron. (H) Representative 
neuronal reconstructions of mPFC layer 5 pyramidal neurons of control and ethanol groups (scale bar = 100 μm). Temporal 
profile. (I) Arborization. The chronic ethanol exposure reduced the basilar arborization in both proximal and distal segments, 
from 50 to 180 μm from the soma [ethanol x distance to soma: F(29,270) = 10.23, p<0.0001; post hoc: %p<0.05 for 50 and 60 
μm, p<0.01 for 70 μm, p<0.001 for 80 μm, p<0.0001 for 90-180 μm]. (J) Length per dendritic order. Ethanol reduced the length 
of the third dendritic order in these neurons [ethanol x dendritic order: F(7,72) = 6.594, p<0.0001, post hoc: ***p<0.001]. (K) 
Total dendritic length. Ethanol reduced the total dendritic length of the basilar arbor of these cells [t(9) = 5.208, p=0.0006]. (L) 
Dendritic spine density. Ethanol consumption did not modify the number of dendritic spines in distal segments of these 
neurons. 
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Figure 3: Structural neuroplasticity of the CA1 dorsal hippocampus (A-F) and BLA pyramidal neurons (G-L). (A) 
Photomicrograph of CA1 dorsal hippocampus pyramidal neuron. (B) Representative neuronal reconstructions of CA1 dorsal 
hippocampus pyramidal neurons of control and ethanol groups (scale bar = 100 μm). Temporal profile. (C) Arborization. Chronic 
ethanol exposure reduced the arborization of the pyramidal cells almost throughout the entire basilar portion: from 30 to 190 
μm from the soma [ethanol x distance to soma: F(29,270) = 11.90, p<0.0001; #p<0.05 for 30 μm, p<0.01 for 190 μm, p<0.0001 
for 40-180 μm]. (D) Length per dendritic order. Ethanol reduced the length of the fourth and fifth dendritic orders in these cells 
[ethanol x dendritic order: F(8,81) = 4.600, p=0.0001, post hoc: ****p<0.0001]. (E) Total dendritic length. In the ethanol-
exposed rats, the total dendritic length (basilar portion) of these neurons was reduced compared to the control group [t(9) = 
15.70, p<0.0001]. (F) Dendritic spine density. Ethanol consumption did not modify the number of dendritic spines in distal 
segments of these neurons. (G) Photomicrograph of BLA pyramidal neuron. (H) Representative neuronal reconstructions of 
BLA pyramidal neurons of control and ethanol groups (scale bar = 100 μm). Temporal profile. (I) Arborization. Chronic ethanol 
exposure induced a general reduction of the basilar dendritic arbor of these neurons, from 30 to 170 μm from the soma: 
[ethanol x distance to soma: F(29,240) = 5.694, p<0.0001; post hoc: %p<0.05 for 30 μm, p<0.01 for 40, 60, 70 μm, p<0.001 for 
50, 80-100, 170 μm, p<0.0001 for 100-160 μm]. (J) Length per dendritic order. Ethanol reduced the length of the third dendritic 
order [ethanol x dendritic order: F(8,72) = 2.942, p=0.0067; post hoc: ****p<0.0001]. (K) Total dendritic length. Ethanol 
reduced he total dendritic length of the basilar arbor of these neurons [t(8) = 3.566, p=0.0073]. (L) Dendritic spine density. 
Ethanol consumption did not modify the number of dendritic spines in distal segments of these neurons. 
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Figure 4: Structural neuroplasticity of cerebellar Purkinje cells. (A) Photomicrograph of cerebellar Purkinje cells. (B) 
Representative neuronal reconstructions of cerebellar Purkinje cells of control and ethanol groups (scale bar = 100 μm). 
Temporal profile. (C) Arborization. Chronic ethanol exposure led to a reduction in arborization in specific segments of these 
neurons [ethanol x distance to soma: F(34,280) = 2.553, p<0.0001; post hoc: #p<0.05 for 70 and 90 μm, p<0.01 for 80 μm; 
%p<0.01 for 130, 150 μm, p<0.001 for 140 and 170 μm, p<0.0001 for 160 μm]. (D) Length per dendritic order. Ethanol reduced 
the length of distal orders from the thirteenth to the twentieth [ethanol x dendritic order: F(8,81) = 4.600, p=0.0001; post hoc: 
&p<0.05 for 13th order, p<0.01 for 15th and 20th orders, p<0.001 for 19th order, p<0.001 for 14th, 16th-18th orders]. (E) Total 
dendritic length. Ethanol reduced the total dendritic length of these neurons compared to the control group [t(8) = 3.796, 
p=0.0053]. (F) Dendritic spine density. Chronic ethanol exposure induced a reduction in the number of dendritic spines in the 
distal dendrites [t(8) = 5.562, p=0.0005]. 

 
 
4.0  DISCUSSION 
In this research, it was demonstrated that 90 days of ad 
libitum ethanol exposure did not impair exploratory 
behavior in male adult rats. However, chronic ethanol 
exposure led to impairments in structural 
neuroplasticity, including reductions in the dendritic 
arbor complexity and length of the basilar arbor in 
pyramidal neurons of the PFC, dorsal hippocampus, and 
BLA. Interestingly, the dendritic spine density in these 
neurons remained unaffected by ethanol. Another 
studied region was the cerebellum, where ethanol 
reduced both the dendritic arbor length and the 
dendritic spine density in Purkinje cells. 
 
Exploring a novel environment is an innate behavior in 
rodents. A common measure to assess exploratory 
behavior is locomotor activity in response to novelty, as 
it reflects aspects of cognitive function (McGregor et al., 
2020; Pisula & Siegel, 2005; Whishaw et al., 2006). In the 
present study, we found that chronic ethanol exposure 
did not alter the number of movements at any 10-
minute interval during the evaluation period, nor did it 
affect the total number of movements over the 60-
minute test. In chronic 10% ethanol exposure protocols 
involving voluntary consumption for 40 days (Mendoza 

et al., 2024) and 84 days (Peng et al., 2024), animals did 
not show changes in locomotor activity, which is 
consistent with our findings. Similarly, in ethanol-
preferring animals, long-term consumption of 10% 
ethanol for 7 months (210 days) did not alter the 
distance traveled in open-field tests, a measure 
comparable to locomotor activity (Xu et al., 2021). 
Notably, although locomotor activity remained 
unchanged in all these protocols, ethanol exposure did 
affect other behavioral domains, such as pain 
perception, motor coordination, recognition memory 
(Xu et al., 2021), and anxiety-like behaviors (Mendoza et 
al., 2024; Peng et al., 2024), in alignment with our 
results. However, the absence of more detailed 
analyses, such as grooming behavior and motor 
coordination testing, as well as memory evaluation, is a 
limitation of the present study. 
 
Regarding structural neuroplasticity in mPFC neurons, 
animals exposed to ethanol exhibited a reduction in the 
complexity and length of the basilar dendritic arbor. 
This finding is consistent with previous reports (Díaz et 
al., 2016; Kroener et al., 2012; Lawson et al., 2022). 
Interestingly, chronic ethanol exposure did not alter the 
density of basilar dendritic spines in these neurons, 
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which aligns with a previous study showing that five 
days of ethanol exposure (20% v/v in water) reduced the 
dendritic complexity in the basilar, but not apical, arbor 
of layer 3 mPFC neurons in mice subjected to fear 
conditioning and extinction (Lawson et al., 2022). In that 
same study, however, ethanol reduced dendritic spine 
density in mPFC neurons, an effect not observed in our 
data. This discrepancy may be due to differences in the 
timing or context of ethanol administration. Due to its 
mechanism of action as a GABAA receptor agonist, 
ethanol can affect multiple brain regions, including 
those of the corticolimbic system. Notably, increased 
activity in the prelimbic cortex following ethanol 
exposure may lead to reduced activity in the ventral 
tegmental area and, consequently, a decrease in the 
dopaminergic signaling through the mesocortical 
pathway (Ferreira et al., 2021). This could favor 
glutamatergic activity and help preserve spine density. 
Nonetheless, further studies are required to confirm 
this hypothesis. 
 
Memory impairments are common in patients with 
chronic AUD and are often attributed to the dysfunction 
of multiple brain areas, including the hippocampus 
(Sullivan & Pfefferbaum, 2023). The lack of a memory 
performance evaluation in the present study is a 
limitation, rendering this aspect of the discussion 
plausible but ultimately speculative. In our analysis, the 
hippocampal CA1 pyramidal neurons of ethanol-
exposed rats exhibited reduced basilar arbor complexity 
and length compared to the control group. These 
alterations may be linked to the cellular effects of 
ethanol on glutamatergic neurotransmission, which 
inhibits NMDA receptors and impairs long-term 
potentiation (LTP) (Ramachandran et al., 2015; Tizabi et 
al., 2018). NMDA receptor activity influences neuronal 
morphology via brain-derived neurotrophic factor 
(BDNF), a key regulator of synaptic plasticity (Afonso et 
al., 2019). BDNF exerts its effects through the receptor 
tyrosine kinase type B (TrkB), activating signaling 
pathways that promote neurotrophic functions such as 
survival, growth, and differentiation through 
transcription factor activation (Pradhan et al., 2019). In 
the hippocampus, BDNF facilitates the induction and 
maintenance of LTP, suggesting a crucial role in ethanol-
induced neuroplastic changes. Regarding the density of 
dendritic spines, no changes were observed between 
groups. However, previous studies have shown that 
chronic ethanol exposure can transiently reduce 
dendritic spine activity and density in CA1 pyramidal 
neurons (Gass & Olive, 2012). 
 

We also analyzed the BLA, a region crucial for reward-
based decision-making, spatial memory, and the 
formation of reward-related memories through its 
connections with the PFC and the hippocampus (Yang & 
Wang, 2017; Yizhar & Klavir, 2018). Evidence suggests 
that chronic ethanol consumption disrupts 
glutamatergic projections from the PFC. Nevertheless, 
pyramidal neurons in the BLA appear to maintain their 
basic synaptic firing and membrane properties (Crofton 
et al., 2022). Consistent with these findings, we 
observed a reduction in the complexity and length of 
BLA pyramidal neurons, but no change in dendritic spine 
density. These results align with studies in pubertal and 
adult mice exposed to chronic intermittent ethanol, 
which reported no change in the number of dendritic 
spines but observed alterations in the proportion of 
spine types (Jury et al., 2017). This may reflect a 
compensatory mechanism for reduced dendritic length, 
but further research is necessary to explore this 
possibility. 
 
Ethanol also enhances GABAergic activity at both pre- 
and postsynaptic levels in BLA neurons, through a 
mechanism involving cannabinoid type 1 (CB1) 
receptors (Varodayan et al., 2017). Ex vivo studies in rats 
show that ethanol increases the activation of GABAergic 
interneurons in the BLA, likely through a rapid, local 
neuroinflammatory response (Munshi et al., 2023). In 
line with this, studies in mice have shown that ethanol 
consumption increases the number of hyperreactive 
astrocytes in the BLA (Brewton et al., 2023). 
Neuroinflammation, in turn, has been associated with 
reductions in dendritic length (LaFever et al., 2022; 
Tamakoshi et al., 2020; Tendilla-Beltrán et al., 2019). 
Thus, the dendritic shortening observed in our study 
may result from both inflammatory processes and 
increased inhibitory transmission induced by ethanol. 
 
Finally, we examined the impact of chronic ethanol 
exposure on the structural neuroplasticity of cerebellar 
Purkinje cells. The cerebellum is a key target in alcohol 
research due to its role in motor control and its 
susceptibility to alcohol-induced neurodegeneration 
(García‐Dolores et al., 2025; Luo, 2015). We found that 
ethanol exposure caused significant atrophy in Purkinje 
cells, both in dendritic structure and at the spine level. 
Given that Purkinje cells are GABAergic (Llinás & 
Sugimori, 1992), this may explain their heightened 
vulnerability to ethanol’s effects. As previously 
reported, cerebellar damage leads to motor 
impairments (Luo, 2015). In our study, we did not 
observe changes in overall locomotor activity between 
ethanol-exposed and control rats. However, this test 
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primarily reflects exploratory behavior and may mask 
motor deficits, especially since novelty and ethanol-
induced craving can increase locomotion (Acevedo et 
al., 2013; Donaire et al., 2018). This addresses the 
study's limitation related to the lack of motor 
coordination assessment in the animals. Since the 
1970s, ethanol has been shown to impair the 
electrophysiological properties of Purkinje cells (George 
& Chu, 1984), and cause reductions in rough 
endoplasmic reticulum, dendrites, and soma volume 
(Lewandowska et al., 1994), neuronal loss (Northup, 
1976), and dendritic arbor atrophy (Tavares et al., 
1983). The latter is consistent with our results. These 
effects may stem from ethanol’s GABAergic agonism, 
resulting in sustained hyperpolarization, as well as from 
ethanol-induced neuroinflammation. Specifically, 
ethanol activates NF-kB and TLR4 pathways, 
contributing to structural damage (Rossetto et al., 
2021). Interestingly, caffeine appears to mitigate 
ethanol-induced inflammation in the cerebellum via 
adenosine receptor-related mechanisms (Rossetto et 
al., 2021). Further studies should investigate the role of 
these receptors in ethanol-induced neuroplasticity 
across brain regions. 
 
It is important to acknowledge certain limitations of this 
study. Chief among them is the exclusive use of male 
rats, as numerous reports have demonstrated sex-
related differences in behavioral and neurochemical 
responses to ethanol (McElroy et al., 2023; Pirino et al., 
2022; Vetter-O’Hagen et al., 2009). Additionally, we 
were unable to measure ethanol consumption or BAC, 
nor behaviors such as rearing frequency, grooming, 
memory performance, or motor coordination. These 

limitations restrict our ability to fully characterize the 
impact of ethanol exposure on cognitive and behavioral 
function. 
 
5.0  CONCLUSIONS 
In conclusion, chronic ethanol exposure induced basilar 
dendritic atrophy without affecting spine density in 
pyramidal neurons of layers 3 and 5 of the mPFC, the 
CA1 region of the dorsal hippocampus, and the BLA. In 
contrast, Purkinje cells exhibited marked dendritic 
hypotrophy accompanied by a reduction in distal 
dendritic spine density. These findings provide 
important insights into neuroplasticity-related 
mechanisms underlying the neurodegenerative effects 
of chronic ethanol exposure and their potential 
cognitive implications. 
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