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Abstract: This study uncovered differential gene expression in blood to distinguish subjects with
probable Alzheimer’s disease (AD) from normal elderly participants (non-demented controls, NDC).
The participants were recruited via training (Phase 1) and validation cohorts (Phase 2). The changes
of gene expression in blood samples from the training cohort (92 AD vs 92 NDC) were assessed using
the microarray technology. The Partial Least Square Discrimination Analysis (PLSDA) was then used
to develop a disease classifier algorithm (accuracy = 88.3%). Six differentially expressed genes were
validated through RT-qPCR using blood samples from the validation cohort [(25 AD, 25 NDC, 12 mild
cognitive impairment (MCl) and 12 vascular dementia (VaD) subjects] . The PLSDA model indicated
a good separation between AD and NDC [area under the receiver operating characteristic curve
(ROCAUC) =0.88]. ABCA9, CNOT8, SESN1, UCP3, MAP2K1 and DDIT4 were found to be differentially
expressed between the two groups. Validation of the panel of six genes gave an overall accuracy of
82.0% (AUC=0.86). The ABCA9 mRNA level, which was significantly (p < 0.05) lower in the AD group,
correctly classified 90.9% of all subjects (AUC=0.94). This group of genes may be responsible for
dysregulation of pathways related to inflammation, mitochondrial dysfunction, oxidative injury,
DNA damage, apoptosis and lipid metabolism. The disease classifier algorithm discriminated
probable AD from MCI and VaD at specificity of 83.3% and 75.0%, respectively. These findings
warrant further validation of potential blood-based biomarkers in larger samples of clinical AD.
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1.0 INTRODUCTION

Globally, Alzheimer’s disease (AD) is expected to
become a major health concern as the proportion of the
aged population enlarges (Alzheimer's Disease
International, 2021; GBD 2019 Dementia Forecasting
Collaborators, 2022). Amongst the reasons for this is the
high cost of currently available methods of diagnosing
and the long waiting time for patients to endure. The
challenge, therefore, is for health service providers to be
able to diagnose AD through the most affordable
approach and identify the probability of engaging with
the disease as early as possible. The key problem with
early AD diagnostics is that the brain tissue is
inaccessible for biopsy, whilst cerebrospinal fluid (CSF)
collection is not a valid option for population-wide
screening; which leaves either blood or saliva as the
most likely candidate. Blood biomarkers are promising
diagnostic indicators as they offer several advantages in
simplicity, convenience, scalability and cost-
effectiveness. Although at one time elusive, recent
reports have shown that blood-based biomarkers can
become a reality in the coming years. Teunissen et al.
(2022) and Schindler and Bateman (2021) found that
concentrations of amyloid, phosphorylated tau proteins,
neurofilament light chain and glial fibrillary acidic
protein in the blood were correlated to AD with
remarkable consistency across different cohorts.
Nevertheless, ultrasensitive detection methods are
often required. It was also found that a combination of
blood biomarkers may be highly useful in predicting
individuals with mild cognitive impairment (MCI) to
progress to AD (Cullen et al., 2021).

Previous studies indicated differential gene expression
in blood sample of subjects with AD and normal elderly
controls (Booij et al., 2011; Lee & Lee, 2020; Lunnon et
al., 2013; Patel et al., 2020). The diagnostic parameters
were, however, inconsistent and further studies are
required for clinical utility (Donaghy et al., 2022). As part
of the effort to uncover useful blood-based biomarkers,
the present study was undertaken amongst two
independent cohorts. The initial training cohort (Phase
1) involved the selection of potential biomarkers after
excluding possible confounding effects. The significant
separation of AD from the normal elderly participants
(non-demented controls, NDC) group in the training
cohort was determined based on the strong analytical
power of > two-fold statistical difference. This was then
followed by validation of the potential biomarkers in a
second cohort (Phase 2). To determine whether the
selected genes were able to correctly predict AD versus
(vs) non-AD groups by the disease classifier when tested,
this study included additional groups of subjects with

mild cognitive impairment (MCI) and vascular dementia
(VaD). Besides, the present study also investigated the
differential changes of gene expression in blood of
probable AD relative to healthy subjects, thereby
identifying the major pathophysiological pathways
involved in AD. Furthermore, the performance of the
selected differentially expressed genes was tested to
determine their ability to distinguish AD, MCI and VaD.

2.0 MATERIALS AND METHODS

2.1 Recruitment and assessment of participants

This study was approved by the ethics committees of
UiTM [reference no: 600-RMI (5/1/6/01)] and the
University of Malaya Medical Centre (UMMC) (reference
no: PPUM HU-61/12/1-1). The present experimental
design was in accordance with principles and guidelines
stipulated by the Declaration of Helsinki, World Medical
Association (Carlson et al., 2004). A written informed
consent was obtained from each patient or legal
representative before blood collection. Recruitment and
assessment procedures were conducted as described in
detail by Mohd Hasni et al. (2017) and Rehiman et al.
(2022). The training cohort (Phase 1) comprised 184
participants [92 NDC subjects vs 92 probable AD
patients] whilst the validation cohort (Phase 2) was
made up of a total of 74 participants [25 NDCs vs 25
probable AD vs 12 MCI vs 12 VaD] (Method S1). Figure
S1 illustrates the workflow of the present study.

2.2 Microarray

Total RNA for microarray was extracted from blood
samples using the Ribopure™ — Blood RNA Isolation Kit
(Ambion, USA) and stored at -80 °C before use. Only
high-integrity RNA with a cut-off > 7.0, 260/280 and
260/230 ratios > 1.8 were used for subsequent analysis.
A total of 184 samples were being analysed for gene
expression based on a one-colour microarray
experiment using the commercial oligonucleotide
microarray slide. The Oligonucleotide probe (single-
stranded RNA fragment) in the slide was 60 bases (mer)
in length. The Agilent SurePrint G3 Human GE 8x60K
(Agilent Technologies, CA, USA) with 42,405
oligonucleotide probes (60-mer), representing 29,271
annotated genes, were used for hybridisation according
to the manufacturer’s instructions (Method S3). The
data has been made available in the National Centre for
Biotechnology Information’s (NCBI) Gene Expression
Omnibus (GEO) and are accessible through GEO series
accession number GSE85426
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE85426).
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2.3 Real-time quantitative-PCR (RT-qPCR) of blood
samples from the training and validation cohorts

Only six genes with FC > 2.0 (namely DDIT4, CNOTS,
SESN1, MAP2K1, ABCA9 and UCP3) were selected based
on their significant up- or downregulation (p < 0.05) for
verification of the microarray results using the RT-qPCR
technique. Thirty AD subjects and 30 NDC subjects were
randomly selected from the training cohort. Total RNA
(1 pug) was reverse transcribed (20 pL) to cDNA using the
Tetro cDNA Synthesis Kit (Bioline, USA). The ensemble
database was referred for primer design
(www.ensembl.org) and synthesised by Integrated DNA
Technologies (Table S1). RT-gPCR was performed in
triplicates using the Corbett 3000 RotorGene
(Corbett Research, NSW, Australia) (Method S4). The
conditions of the RT-qPCR used were based on the two-
step cycling protocol described in the manual of the
SensiFAST SYBR® No-ROX Kit: initial polymerase enzyme
activation step (95°C for 2 mins), followed by 40 cycles
of denaturation (95°C for 5 secs) and
annealing/extension (acquired at the end of step; 60°C
for 15 secs). The FC in AD was determined by the Pfaffl
method (Pfaffl, 2001). The panel of six genes was finally
evaluated in the validation cohort (independent of
microarray study, Figure S1), which comprised of 74
subjects (25 AD, 25 NDC, 12 MCl and 12 VaD).

2.4 Statistical analysis

Statistical analyses for demographic and biochemical
data were performed using the GraphPad Prism
Software version 6.0 (GraphPad Software Inc, CA, USA).
Data were presented as mean + SD. All results with a p <
0.05 were considered to be significantly different.
Computations of sensitivity and specificity for each
possible cut-off point of the individual mRNA were
performed using statistical software package (SPSS
Version 17.1 for Windows) for analysis.

3.0 RESULTS

3.1 Training cohort: demography, clinical
characteristics and medication history

Table 1 summarises the demography and clinical
characteristics of the participants from the training
cohort. A total of 184 participants were recruited. Only
180 samples of probable AD and NDCs (n =90 per group)
were included in the final data analysis. Four samples
were excluded due to poor microarray sample quality.
There was no significant difference in gender between
the probable AD and NDC groups. The average age for
probable AD patients and NDC subjects was 77.9 and
75.2 years old, respectively (p = 0.02). Although age was
a risk factor for AD, the linear regression analysis found

no association between the selected genes and age (see
Subheading 3.2).

The mean Mini-Mental State Examination (MMSE),
Instrumental Activity of Daily Living (IADL) and Basic
Activity of Daily Living (BADL) scores were significantly
different (p < 0.001) between probable AD patients and
NDC subjects. MMSE scores of 21-26 indicate mild
dementia, 10-20 indicate moderate dementia and 0-9
indicate severe dementia (Perneczky et al., 2006). The
mean MMSE score for probable AD patients was 17.3
with 40.0% of patients under the mild dementia
category, 46.7% of patients under the moderate
dementia category and 13.3% of patients under the
severe dementia category. As for the NDC group, the
mean MMSE score was 29.7. The mean IADL and BADL
scores for NDC were 15.9 and 11.9, respectively.
Probable AD patients, on the other hand, were
associated with lower mean scores of IADL (4.7) and
BADL (9.8), respectively. Regarding comorbidities, there
was no significant difference between the groups of
probable AD patients and NDC. Assessments like clinical
dementia rating (CDR), were only performed for
probable AD patients. The total homocysteine (tHcy)
was significantly (p < 0.001) lower whilst the
holotranscoabalamine (holoTC) and folate in plasma
samples were significantly (p < 0.01) higher in probable
AD subjects when compared to NDC. Probable AD
patients and NDC subjects seemed equally involved in
physical activities. Both probable AD patients and NDC
exhibited no significant difference in physical activities,
smoking, alcohol consumption and years of education.
Table S2 shows the medication history of the
participants from the training cohort. Amongst the
medications, the usage of acetylcholinesterase inhibitor
(AChEI), N-methyl-D-aspartate (NMDA) receptor
antagonists and statins were significantly different (p <
0.05) between the groups of probable AD patients and
NDC.

3.2 Training cohort: diagnostic classifier that
distinguishes AD patients from NDC

The discovery of significant genes is an essential step in
constructing a precise classification model. By using the
Benjamini Hochberg false discovery rate (FDR) multiple
testing correction with fold change (FC) 2 2.0 as cut-off
at p < 0.05, a total of 299 genes out of 29,271 annotated
genes were selected. Further to the removal of
unidentified genes, 172 genes remained, with 132 genes
being downregulated and 40 genes being upregulated.
To differentiate gene expression between the two
groups, Z-score transformation was performed. The 50
highest-ranked probes based on the Z score (Table S3)
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were used to build a partial least square discrimination
analysis (PLSDA) model for the training cohort (Table 2).
The PLSDA model was presented with an overall
accuracy of 88.3%, sensitivity of 90.0% and specificity of
86.7%. There was a good separation between the two
groups (probable AD and NDC) with an area under the
curve (AUC) of 0.88.

Although the set of 50 genes yielded higher accuracy,
sensitivity and specificity, using too many genes as a
panel for biomarker discovery is certainly not practical.
The PLSDA model was then tested on 25, followed by 12
and 10 highest ranked genes based on the Z score (Table
2). The results showed that the set of 12 genes produced
better accuracy (83.9%), sensitivity (82.2%) and

specificity (85.6%) than the set of 10 genes in
distinguishing the groups (Table 2). Of the 12 genes, only
six genes (CNOTS8, DDIT4, SESN1, MAP2K1, ABCA9 and
UCP3) that were unaffected by the stage of AD, gender
and ethnicity were selected. For stages of AD, subjects
were retrospectively graded according to the MMSE
score: MMSE score of > 27 indicates None, 21-26
indicates mild, 10-20 indicates moderate, 0-9 indicates
severe dementia. Besides, the six selected genes were
also unaffected by age as indicated by the linear
regression analysis (CNOTS, p = 0.879; DDIT4, p = 0.344;
SESN1, p = 0.578; MAP2K1, p = 0.412; ABCA9, p = 0.268;
and UCP3, p = 0.112). The selected six genes from the
microarray analysis were then verified using RT-qPCR.

Table 1: Demographics and clinical characteristics of participants of the training cohort

Microarray
Parameters
AD (n = 90)* NDC (n = 90) *

Gender

Male 42 48

Female 48 42 0.4
Age in year” 77.9+5.7 75.2+7.2 0.02*
Ethnicity:

Chinese 59 56

Indian 13 23 0.1

Malay 18 11
Education in year * 9.2+54 11.1+3.7 0.005*
MMSE 1736 29.7+1.2 <0.001***
CDR 1.6+0.7 NA NA
BADL 9.8+3.3 11.9+0.1 <0.001%**
IADL 4.7+3.5 15.9+0.5 <0.001***
Total homocysteine 14.8+4.7 12.6+4.1 0.001%**
Holotranscobalamine 93.4+63.9 120.1 £ 64.0 0.006**
Folate 8.0+5.2 10.1+4.9 0.008**
Total cholesterol 49+1.1 48+1.1 0.6
Low density lipoprotein 2.5+0.9 2.6+1.0 1.0
Smoking (yes %) 16 (17.8%) 11 (12.2%) 0.3
Alcohol (yes %) 20 (22.2%) 20 (22.2%) 1.0
Physical activity (yes %) 49 (54.4%) 51 (56.7%) 0.8
Hypertension (yes %) 46 (51.1%) 38 (42.2%) 0.2
Cardiovascular disease (yes %) 14 (15.6%) 13 (14.4%) 0.8
Stroke/ history of stroke (yes %) 5 (5.6%) 1(1.1%) 0.1
Hyperlipidaemia (yes %) 21 (23.3%) 19 (21.1%) 0.7
Diabetes mellitus (yes %) 29 (32.2%) 24 (26.7%) 0.4
Cancer (yes %) 1(1.1%) 5 (5.6%) 0.1
Traumatic brain injury (yes %) 3 (3.3%) 8 (8.9%) 0.1

mean + SD; *p < 0.05; **p < 0.01; ***p < 0.001;
tNumber of years spent at school, college or university;

5The respective p-value of categorical data was derived from chi-squared test whereas the respective p-value of continuous

data was derived from independent t-test;

Abbreviations: AD, Alzheimer’s disease; BADL, basic activities of daily living; CDR, clinical dementia rate; IADL, instrumental
activities of daily living; MMSE, Mini-mental State Examination; NA, data not available; NDC, non-dementia controls; SD,

standard deviation.
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Table 2: Prediction based on the PLSDA using microarray data*

Number of Accuracy Sensitivity Specificity
genes (%) (%) (%)
50 88.3 90.0 86.7
25 85.0 83.3 86.7
12 83.9 82.2 85.6
10 78.3 78.9 77.8

Gene Name

(Table S2)

ULK3, PSMG3, POLR2B, RTCB, CCND2, SPG7, SEC16A, ACTG1,

TTC38, SNORA73A, XLOC_014512, SNORD3B-1, DEFA3,
CNOTS, DDIT4, SESN1, MAP2K1, SPOCD1, C5AR1, CAMP,
HAPLN2, FBRSL1, UCP3, IQSEC3, ABCA9
CNOTS, DDIT4, SESN1, MAP2K1, SPOCD1, C5AR1, CAMP,
HAPLN2, FBRSL1, UCP3, IQSEC3, ABCA9
CNOTS, DDIT4, SESN1, MAP2K1, SPOCD1, CAMP, HAPLN2,
UCP3, IQSEC3, ABCA9

*Values are based on GeneSpring PLSDA from 90 AD and 90 NDC subjects

To verify the microarray results, 60 subjects (30 AD vs 30
NDC) were randomly selected from the training cohort.
The expression levels of the six genes (Figure 1), which
were significantly different (p < 0.05) between AD and
NDC groups from the microarray analysis, yielded a
similar trend in the RT-qPCR (Pearson’s r = 0.954, p =
0.0002). The FC and regulation of the genes are as
follows: CNOT8 (array = 2.40, RT-qPCR = 5.75); MAP2K1
(array = 2.35, RT-gqPCR = 3.80); DDIT4 (array = 2.29, RT-
gPCR = 2.94); SESN1 (array = 2.09, RT-gPCR = 3.29);
ABCA9 (array = -2.13, RT-qPCR = -4.55) and UCP3 (array
=-3.07, RT-gPCR = -3.23). The RT-qPCR method showed
higher FC than the FC obtained using the microarray,
irrespective of whether the genes were upregulated or
downregulated.
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Figure 1: Expression levels of the six selected genes between
AD and NDC groups by microarray and RT-qPCR of the training
cohort. The FC and regulation of the genes are as follows:
CNOTS8 (array = 2.40, RT-qPCR = 5.75); MAP2K1 (array = 2.35,
RT-gPCR = 3.80); DDIT4 (array = 2.29, RT-qPCR = 2.94); SESN1
(array = 2.09, RT-gPCR = 3.29); ABCA9 (array =-2.13, RT-qPCR
=-4.55) and UCP3 (array = -3.07, RT-gPCR =-3.23).

3.3 Training cohort: identification of pathways and
biologically relevant network based on microarray

The 172 genes (p < 0.05) with FC > 2 from the
GeneSpring analysis were then determined for the
pathways involved by using the IPA software. A total of
15 substantively dysregulated canonical pathways were
recognised (Table S4) and they included Granzyme A
signalling, chemokine signalling, STAT3 signalling,
mitochondrial dysfunction, lipid signalling (protein
kinase A) and various nervous system related signalling
(e.g., axonal guidance and gap junction signalling). The
top-ranked biological functions comprised of infectious
disease, respiratory disease, inflammatory response,
cell death and survival, cell-to-cell signalling and
interaction and organ and tissue morphology. A total of
five networks and interactions were identified by the
Ingenuity Pathway Analysis (IPA) based on the functional
roles of the genes. The genes selected for RT-gPCR
validation amongst the probable AD participants were
from the top four molecular networks: DDIT4, MAP2K1
(network 1), CNOT8 (network 2), UCP3 (network 3),
ABCA9, SESN1 (network 4). Functional annotation was
performed using the Database for Annotation
Visualization and Integrated Discovery (DAVID) web-
accessible program. Out of the 172 genes, 139 genes
were identifiable by DAVID, out of which 41 belong to
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. DAVID functional annotation chart analysis of
genes showed substantial enrichment of acetylation and
nucleosome.

3.4 Validation cohort: demography and clinical
characteristics

The validation cohort (Table 3) was made up of 30
(40.5%) male and 44 (59.5%) female participants. The
MMSE, IADL and BADL scores for the AD patients were
significantly lower when compared to the NDC
individuals (p < 0.001), followed by VaD as well as MCI.
No significant difference was observed for all other
tested parameters.
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Table 3: Demographic and clinical characteristics of participants of the validation cohort

Test cohort (RT-qPCR)

Variables MCl VaD
(n=12) (n=12)

Gender

Male 13 6 9 12

Female 12 6 3 13 0.06
Age in year (mean * SD) 76.8+7.3 76.6 £4.7 73.2+£5.0 72.8+5.4 0.1
Ethnicity

Chinese 18 9 5 8

Indian 4 1 2 8 0.06

Malay 3 2 5 9
Education in year (mean = SD) t 9.6+6.6 11.2+4.1 104+7.1 10.0+£5.9 0.9
Social class (high/middle/lower) 1/5/19 3/4/5 2/6/4 2/12/11 0.08
MMSE (mean + SD) 19.7£5.2 27.6+1.0 20.7£5.1 29.6+0.8 0.0001
CDR (mean + SD) 1.2 £0.4(13) 0.5+0(9) 0.8+0.3(5) NA NA
BADL (mean £ SD) 11.0+1.9 11.4+0.7 9.2+3.8 16.0+0 0.001
IADL (mean % SD) 6.5+3.7 89148 58+5.1 12.0+0 0.0001
Total homocysteine (mean + SD) 13.3+4.4 12.4+3.4 13.6+6.4 13.3+4.9 1.0
Holotranscobalamine (mean * SD) 123.8+78.2 83.68 £ 54.0 93.4+41.9 141.7 + 68.7 0.06
Folate (mean % SD) 9.7+5.5 8.3+4.4 6.1+1.8 10.9+5.2 0.07
Total cholesterol (mean + SD) 53+1.2 52+1.1 50+£1.1 54+1.1 0.8
Low density lipoprotein (mean + SD) 3.0+1.1 3.0+£0.9 2.7+0.5 3.2+1.0 0.5
Smoking (yes %) 2 (8.0%) 0 (0%) 3 (25.0%) 5 (20.0%) 0.09
Alcohol (yes %) 5 (20.0%) 3 (25.0%) 2 (16.7%) 8 (32.0%) 0.8
Physical activity (yes %) 15 (60.0%) 4 (33.3%) 6 (50.0%) 16(64.0%) 0.7
Hypertension (yes %) 7 (28.0%) 3 (25.0%) 4 (33.3%) 4 (16.0%) 0.2
Cardiovascular disease (yes %) 2 (8.0%) 2 (16.7%) 2 (16.7%) 1 (4.0%) 0.2
Stroke / history of stroke (yes %) 3 (12%) 1(8.3%) 2 (16.7%) 4 (16.0%) 0.8
Hyperlipidemia (yes %) 3 (12.0%) 1(8.3%) 2 (16.7%) 4 (16.0%) 0.8
Diabetes mellitus (yes %) 3 (12.0%) 2 (16.7%) 2 (16.7%) 2 (8.0%) 0.5
Cancer (yes %) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
Traumatic brain injury (yes %) 1(4.0%) 0 (0%) 0 (0%) 1 (4.0%) 0.9

tNumber of years spent at school, college or university;
5The respective p-value of categorical data was derived from chi-squared test whereas the respective p-value of continuous

data was derived from independent t-test;

Not all CDR score available for the subjects, the number of subjects analysed for CDR score was shown in parentheses;
Abbreviations: AD, Alzheimer’s disease; BADL, basic activities of daily living; CDR, clinical dementia rate; IADL, instrumental
activities of daily living; MMSE, Mini-mental State Examination; NA, data not available; NDC, non-dementia controls; SD,

standard deviation.

3.5 Validation cohort: Prediction of AD based on the
expressions of the six selected genes using RT-qPCR
Six selected genes were analysed using the RT-qPCR
technique (Table S5). Figure 2a illustrates the FC of gene
expression in probable AD, MCl and VaD relative to NDC.
The FC (AD vs NDC) of the upregulated genes (CNOTS,
DDIT4, SESN1 and MAP2K1) were 9.21 (p = < 0.0001),
3.24 (p =0.0244), 6.32 (p < 0.0001) and 9.07 (p = 0.0001),
respectively. For the FC (AD vs NDC) of the
downregulated genes (ABCA9 and UCP3), on the other
hand, were -2.43 (p = 0.043) and -2.07 (p < 0.0001),

respectively. Except for the SESN1, the FC (MCl and VaD
vs NDC) of ABCA9, UCP3, CNOTS8, DDIT4 and MAP2K1
expression levels were also significantly different (p <
0.05). The SESN1 gene expression was not significantly
different between VaD patients (p = 0.468) and NDC.

It was found that the gene expression of ABCA9 was able
to correctly classify probable AD patients at a sensitivity
and specificity of about 91% and an AUC of 0.94 (Table
4). The respective sensitivity and specificity of the
remaining genes were between 73-86% and 74-83%,
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respectively, with AUC ranging between 0.81-0.93. patients and 20 of 25 (specificity of 80.0%) NDC
When the classifier was based on a combination of all six  participants were correctly classified. The Positive
genes (Table 4), 41 out of 50 subjects were correctly Likelihood Ratio (PLR) was 8.20. The combined six genes
classified, vyielding an accuracy of 82.0%. More produced an AUC value of 0.86.

specifically, 21 of 25 (sensitivity of 84.0%) probable AD
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Figure 2: The expression of six genes in the validation cohort and the efficacy of the identified disease classifier in other
neurodegenerative groups. (A) Bars indicate mean fold of 74 participants: 25 probable AD, 12 MCl, 12 VaD and 25 NDC subjects.
The NDC subjects are set at 1. Bars with common superscripts differ significantly at *p < 0.05 AD vs NDC, #p < 0.05 MCl vs NDC,
*p < 0.05 VaD vs NDC. Before generating the graph, the raw data were log transformed as the log transformed data were
suitable for plotting graphs. The data was found to be non-normally distributed as determined by the Wilks-Shapiro test for
normality, thus the Mann-Whitney U test was used. (B) Gene expression scores between probable AD patients (in red) and
MCI (in black). In the test cohort, 10 of the 12 MCI subjects were assigned to the correct class with the specificity of 83.3% for
MCI as compared to probable AD. (C) Gene expression scores between probable AD patients (in red) and VaD (in black). Nine
of 12 VaD patients were correctly classified NDC, with the specificity of 75.0% when compared to probable AD.

NEUROSCIENCE RESEARCH NOTES | 2023 | VOLUME 6 | ISSUE 4 | ARTICLE 262 | PAGE 7




Table 4. Predictive capacity of six AD- associated genes from probable AD patients (n = 25) and NDC (n = 25)

Gene Name Sensitivity
ABCA9 90.90
ucp3 77.30
CNOT8 72.70
DDIT4 77.30
SESN1 86.40
MAP2K1 80.00
Combination of all six genes 84.00

Specificity Accuracy AUC PLR
91.30 91.10 0.94 9.57
73.90 75.6 0.81 6.06
78.30 75.60 0.84 3.40
77.30 77.30 0.80 3.25
82.60 84.40 0.93 6.06
78.30 79.10 0.84 4.19
80.00 82.00 0.86 8.20

Abbreviations: AUC, Area under curve; PLR, Positive likelihood ratio; ABCA9, ATP Binding Cassette Subfamily A Member 9; UCP3,
Uncoupling Protein 3; CNOT8, CCR4-NOT Transcription Complex Subunit 8; DDIT4, DNA-damage-inducible transcript 4; SESN1,

Sestrin 1; MAP2K1, Mitogen-Activated Protein Kinase 1

Note: The analysis was based on individual gene using SPSS software

In terms of correlation between gene expression and
MMSE scores (Figure 3), ABCA9, MAP2K1 and SESN1
were strongly correlated with MMSE scores which
indicated the severity of the disease (ABCA9, r=0.72, p
=0.0002; MAP2K1, r=-0.74, p =0.0002; SESN1,r=-0.73,
p = 0.0001). Lower expression of the ABCA9 gene was
associated with a lower MMSE score whereas higher

expression of MAP2K1 and SESN1 genes was associated
with lower MMSE scores. Other genes showed a
moderate correlation between their expression level
and MMSE scores (UCP3, r=0.47, p = 0.03; CNOTS, r = -
0.65, p =0.001 and DDIT4, r =-0.62, p = 0.002).
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Figure 3. The correlation between MMSE score against six selected genes for RT-qPCR of the validation cohort. All genes
showed a significant correlation with MMSE score in AD patients and NDC (ABCA9, r =0.72; p =0.0002; UCP3,r=0.47; p =0.03;
CNOTS, r =-0.65; p = 0.001; DDIT4, r =-0.62; p = 0.002; SESN1, r =-0.73; p = 0.0001; MAP2K1, r = -0.74; p = 0.0002).
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3.6 Validation cohort: performance of diagnostic
classifier for MCl and VaD

The MCI group was included in the test cohort to
evaluate whether the diagnostic blood gene expression
classifier could be a biomarker for the early stage of
cognitive dysfunction. Of the 12 MCI subjects, 10
individuals were classified as MCI (specificity of 83.3%)
whereas two were as probable AD (Figure 2B). Although
the number of subjects was relatively low, the present
findings indicated the potential predictive power of the
identified gene expression signature. As a high
percentage of MCl was expected to possess a likely AD-
endpoint, the current results showed that they were
sufficiently different from probable AD to be classified
as MCI.

The AD classifier appeared to make only a small
distinction, in favour of classifying VaD subjects who
shared a lot of pathological neurodegeneration
processes and were close to be diagnosed as probable
AD. Of the 12 VaD patients with acceptable RT-qPCR
quality, 9 (75.0%) were correctly predicted as non-AD by
the disease classifier (Figure 2C). These results might
represent a marker of diseases sharing common
aetiology.

4.0 DISCUSSION

Given that a list of <10 biomarkers would be
mathematically more robust and more practical for
clinical testing purposes (Xia et al., 2013), the present
study selected six genes (DDIT4, CNOT8, MAP2K1,
SESN1, ABCA9 and UCP3), which were not associated
with stage of disease, gender or ethnicity, for validation
using RT-qPCR in both training and validation cohorts.
Validation of these six genes gave rise to excellent
sensitivity (84.0%), specificity (80.0%), accuracy (82.0%)
and AUC of 0.86. ABCA9 gene, in particular,
discriminated probable AD patients from NDCs with high
sensitivity (90.9%), specificity (91.3%), accuracy (92%),
AUC of 0.94 and high correlation with MMSE test (r =
0.72, p = 0.002).

Several studies on gene expression data have uncovered
valuable patterns from biopsy or autopsy-based samples
but these findings are difficult to be extrapolated to
clinical settings. Some of the early studies on blood gene
expression in AD had successfully identified a list of
biomarkers with sensitivity and specificity > 80.0% (Bai
et al., 2014; Booij et al., 2011; Fehlbaum-Beurdeley et
al., 2010; Maes et al., 2007). The expression values of
AD-related genes obtained from recent studies using
blood samples of AddNeuroMedl and 2 (ANM1 and
ANM2) datasets also exhibited AUC >0.8 (Lee & Lee

2020) and could classify AD from healthy control. Voyle
et al. (2016), who used gene expression data from the
ANM and Dementia Case Registry (DCR) cohorts,
obtained an AUC of 0.74. There was, however, another
gene expression study (Patel et al., 2020) that had found
biomarkers with low sensitivity and low specificity
(<80.0%). The list of significantly dysregulated genes in
probable AD patients obtained in this study was,
however, different from those of previous AD blood-
based gene expression studies (Griswold et al., 2020;
Lunnon et al., 2013; Nho et al., 2020; Niculescu et al.,
2020; Ou et al., 2021; Panitch et al., 2022; Park et al.,
2020; Park et al., 2021; Patel et al., 2019). The present
gene enrichment analysis found dysregulated pathways
related to oxidative stress, mitochondrial dysfunction,
apoptosis, inflammation, DNA damage and perturbed
lipid metabolism in probable AD. In spite of the different
genes obtained when compared to the previous studies,
inflammation and mitochondrial dysfunction seemed to
be the common pathways involved in AD pathogenesis
(Griswold et al., 2020; Lee & Lee, 2020; Lunnon et al.,
2012; Voyle et al., 2016).

The dysregulated genes were analysed to determine the
diagnostic potential of whether these genes were part
of AD pathology or unspecific to the pathology by
calculating the changes in gene expression, sensitivity
and specificity of selected genes. The comparison was
performed between probable AD patients and NDC
subjects and also other neurological patients such as
MCI and VaD. The importance of using other
neurodegenerative diseases (MCl and VaD as in the
present study) was to test whether the selected genes
were specific towards only probable AD. MCI, which is a
transition between normal aging and early dementia
(Lovell & Markesbery, 2007), is regarded as a risk of
dementia, especially AD. In spite of the small sample
size, the present results of the six genes showed good
separation in MCI. Profiles of ABCA9, SESN1 and CNOTS8
genes, in particular, supported the hypothesis that MCl
is a transition between normal aging and early
dementia. DDIT4 gene was upregulated in MCl and AD,
with a greater extend of upregulation in MCI.
Nevertheless, the upregulation of UCP3 gene and
downregulation of MAP2K1 gene exhibited profiles
opposite to that in probable AD patients.

The present study had also included VaD in the test
cohort. VaD is a syndrome and pathologic subtype that
includes ischaemic and haemorrhagic strokes, cerebral
hypoxic-ischaemic events and senile
leukoencephalopathic lesions (Roman et al., 1993). VaD
was chosen in the present study because it is the second
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commonest type of dementia. By using the six selected
genes, this study found the specificity of VaD to be 75%.
VaD may possess only minor neuropathological changes
of AD (Meyer et al., 2002). As such, the specificity of VaD
in the current study was believed to adequately indicate
that the constructed classification algorithm was specific
in picking up the changes in gene expression that might
have occurred in the blood of AD patients. There is,
however, a lack of previous study that had used VaD as
part of their test cohort.

Figure 4 illustrates the involvement of the six genes in
pathways related to the pathogenesis of AD. Chronic
activation of the NMDA receptor may upregulate the
mitogen-activated protein kinase (Amadoro et al., 2006;
Wan et al., 2012) via extracellular-signal-regulated
kinase (ERK) phosphorylation (Sun et al., 2016) (Figure
4A) that could be accompanied by increased MAP2K1
expression that may cause inflammatory response
(Wang et al., 2014). Dysregulated mitochondria which
were manifested through the downregulation of UCP3
gene (Figure 4B), would result in oxidative stress
(Thanan et al., 2015) and DNA damage.

With regards to oxidative stress, upregulation of SESN1
gene has been identified as an implication of
perturbation of the mitochondria process in AD (Figure
4C). Oxidative stress could be derived from excessive
mitochondria ROS production. Their reactive end
products could damage DNA through the upregulation
of the DDIT4 gene (Figure 4D). Lipid dysregulation
(Figure 4E), which was primarily found to be related to
AD (Wong et al.,, 2017), could be associated with
downregulation of ABCA9 gene. In this study, ABCA9
gene was found to exhibit the highest sensitivity and
specificity. This warrants further investigation to
elucidate the function of this gene in AD pathogenesis.
ABCA9 gene may play a role in monocyte differentiation
and lipid homeostasis (Piehler et al., 2002).
Transcriptional expression of this gene could be induced
during monocyte differentiation into macrophages and
suppressed by cholesterol import. As an ATP-binding
cassette (ABC) transporter gene, ABCA9 plays essential
roles in mediating cholesterol efflux by regulating
cellular cholesterol homeostasis (Li et al., 2013).

Although cholesterol is a major component of the
mammalian cell membrane, the accumulation of
excessive cholesterol is toxic to cells. This would in turn,
impair cell signalling which would cause impairment in
synaptic integrity and neurotransmission. Recent
findings in AD research indicated disturbance of AP

exportation at the brain’s barriers, which was
physiologically facilitated by the ABC transporter
superfamily, might play a fundamental role in AD
initiation and progression. Previous studies showed
several ABC transporters, such as ABCA1, ABCBI],
ABCG1, ABCG5, and ABCGS8 to play essential roles in
mediating cholesterol efflux by the regulation of cellular
cholesterol homeostasis (Chen et al., 2011; EIAli &
Rivest, 2013; Li et al., 2013). Only little is known about
the function of the subgroup of ABCA6-like transporters
which form a compact gene cluster located on chr
17924.2-3. This cluster comprises the transporters
ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10. Although
ABCA9 is expressed at detectable levels in the brain and
is likely involved in lipid transport processes, the
potential implication in neurodegeneration remains
purely speculative at this point (Pereira et al., 2012,
2018). On the other note, all putative mechanisms that
lead to neuronal death in AD (by apoptosis) could be
correlated with the upregulation of CNOT8 gene
expression (Figure 4F). Any functional defects in the
regulation of the deadenylation activity by CNOT8 gene
could induce p53 level, which could lead to apoptosis.
The analysis revealed that molecular perturbation in AD
patients tend to be shared widely, vary significantly and
substantially overlaps within several confounding
factors.

The present study acknowledges several limitations.
There was a lack of clinical information from
neuroimaging data, CSF analysis and more established
dementia-rating scale. Besides, this study also
encountered challenges in identifying and characterising
unknown genes. The microarray technique relies upon
existing knowledge about the genome sequence and is
limited by the availability of only several databases.
Furthermore, microarray has limited dynamic detection
range owing to background and saturation signals. Given
these limitations, the results reported in this study are
exploratory and should be interpreted conservatively.
On another notes, the present study acknowledges the
usefulness of longitudinal gene expression studies in
supporting AD diagnosis and monitoring from the
prodromal to the symptomatic stage. As such, it would
be beneficial for future validation work to include more
patients with well-characterised MCI and other
dementing disorders (PD, Lewy Body Dementia, VaD) as
well as asymptomatic patients with preclinical disease to
validate AD-specific biomarkers.
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Figure 4: Genes in AD-related biological pathways. AD-related pathways could be accelerated via several pathways that lead
to degeneration. (A) Activation of immune response by stressors such as AR and tau activates physiological activators of
extracellular-signal-regulated kinase (ERK) via elevation of MAP2K1 gene, leading to aberrant protein phosphorylation and
enhanced inflammation. (B) Dysregulated mitochondria resulting from inhibition of UCP3 gene could lead to increased
mitochondrial reactive oxygen species (ROS) production. (C) ROS causes oxidative stress, leading to brain oxidative impairment
with the involvement of SESN1 gene. (D) Oxidative DNA damage have been largely found in brain region of AD associated with
the upregulation of DDIT4 gene. (E) Lipid dysregulation related to the downregulation of ABCA9 gene would cause impairment
in cell homeostasis and neurotransmission. Accumulation of excessive cholesterol is toxic to cells and could lead to neuronal
cell death. (F) Multiple cellular functions of p53 appear to be associated with increased CNOT8 gene expression that could lead
to induction and regulation of cell cycle arrest and apoptosis. Deadenylation activity by CNOT8 could induce p53 level in
response to hypoxia, DNA damage and then cell death through apoptosis.

5.0 CONCLUSIONS

The present study had revealed six genes (i.e., ABCA9,
UCP3, MAP2K1, SESN1, CNOT8 and DDIT4) that might be
implicated in AD pathogenesis. This gene panel seems to
be associated with inflammation, mitochondrial
dysfunction, oxidative injury, DNA damage and
apoptosis. Another important pathway highlighted in
this study is the lipid metabolism pathway through the
downregulation of ABCA9 gene, that would lead to
neuronal cell death.
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