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Abstract: This study uncovered differential gene expression in blood to distinguish subjects with 
probable Alzheimer’s disease (AD) from normal elderly participants (non-demented controls, NDC). 
The participants were recruited via training (Phase 1) and validation cohorts (Phase 2). The changes 
of gene expression in blood samples from the training cohort (92 AD vs 92 NDC) were assessed using 
the microarray technology. The Partial Least Square Discrimination Analysis (PLSDA) was then used 
to develop a disease classifier algorithm (accuracy = 88.3%). Six differentially expressed genes  were 
validated through RT-qPCR using blood samples from the validation cohort [(25 AD, 25 NDC, 12 mild 
cognitive impairment (MCI) and 12 vascular dementia (VaD) subjects] . The PLSDA model indicated 
a good separation between AD and NDC [area under the receiver operating characteristic curve 
(ROC AUC) = 0.88]. ABCA9, CNOT8, SESN1, UCP3, MAP2K1 and DDIT4 were found to be differentially 
expressed between the two groups. Validation of the panel of six genes gave an overall accuracy of 
82.0% (AUC=0.86). The ABCA9 mRNA level, which was significantly (p < 0.05) lower in the AD group, 
correctly classified 90.9% of all subjects (AUC=0.94). This group of  genes may be responsible for 
dysregulation of pathways related to inflammation, mitochondrial dysfunction, oxidative injury, 
DNA damage, apoptosis and lipid metabolism. The disease classifier algorithm discriminated 
probable AD from MCI and VaD at specificity of 83.3% and 75.0%, respectively. These findings 
warrant further validation of potential blood-based biomarkers in larger samples of clinical AD.  
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1.0  INTRODUCTION 
Globally, Alzheimer’s disease (AD) is expected to 
become a major health concern as the proportion of the 
aged population enlarges (Alzheimer's Disease 
International, 2021; GBD 2019 Dementia Forecasting 
Collaborators, 2022). Amongst the reasons for this is the 
high cost of currently available methods of diagnosing 
and the long waiting time for patients to endure. The 
challenge, therefore, is for health service providers to be 
able to diagnose AD through the most affordable 
approach and identify the probability of engaging with 
the disease as early as possible. The key problem with 
early AD diagnostics is that the brain tissue is 
inaccessible for biopsy, whilst cerebrospinal fluid (CSF) 
collection is not a valid option for population-wide 
screening; which leaves either blood or saliva as the 
most likely candidate. Blood biomarkers are promising 
diagnostic indicators as they offer several advantages in 
simplicity, convenience, scalability and cost-
effectiveness. Although at one time elusive, recent 
reports have shown that blood-based biomarkers can 
become a reality in the coming years. Teunissen et al. 
(2022) and Schindler and Bateman (2021) found that 
concentrations of amyloid, phosphorylated tau proteins, 
neurofilament light chain and glial fibrillary acidic 
protein in the blood were correlated to AD with 
remarkable consistency across different cohorts. 
Nevertheless, ultrasensitive detection methods are 
often required. It was also found that a combination of 
blood biomarkers may be highly useful in predicting 
individuals with mild cognitive impairment (MCI) to 
progress to AD (Cullen et al., 2021). 
 
Previous studies indicated differential gene expression 
in blood sample of subjects with AD and normal elderly 
controls (Booij et al., 2011; Lee & Lee, 2020; Lunnon et 
al., 2013; Patel et al., 2020). The diagnostic parameters 
were, however, inconsistent and further studies are 
required for clinical utility (Donaghy et al., 2022). As part 
of the effort  to uncover useful blood-based biomarkers, 
the present study was undertaken amongst two 
independent cohorts. The initial training cohort (Phase 
1) involved the selection of potential biomarkers after 
excluding possible confounding effects. The significant 
separation of AD from the normal elderly participants 
(non-demented controls, NDC) group in the training 
cohort was determined based on the strong analytical 
power of > two-fold statistical difference. This was then 
followed by validation of the potential biomarkers in a 
second cohort (Phase 2).  To determine whether the 
selected genes were able to correctly predict AD versus 
(vs) non-AD groups by the disease classifier when tested, 
this study included additional groups of subjects with 

mild cognitive impairment (MCI) and vascular dementia 
(VaD). Besides, the present study also investigated the 
differential changes of gene expression in blood of 
probable AD relative to healthy subjects, thereby 
identifying the major pathophysiological pathways 
involved in AD. Furthermore, the performance of the 
selected differentially expressed genes was tested to 
determine their ability  to distinguish AD, MCI and VaD. 
 
2.0  MATERIALS AND METHODS 
2.1  Recruitment and assessment of participants 
This study was approved by the ethics committees of 
UiTM [reference no: 600-RMI (5/1/6/01)] and the 
University of Malaya Medical Centre (UMMC) (reference 
no: PPUM HU-61/12/1-1). The present experimental 
design was in accordance with principles and guidelines 
stipulated by the Declaration of Helsinki, World Medical 
Association (Carlson et al., 2004). A written informed 
consent was obtained from each patient or legal 
representative before blood collection. Recruitment and 
assessment procedures were conducted as described in 
detail by Mohd Hasni et al. (2017) and Rehiman et al. 
(2022). The training cohort (Phase 1) comprised 184 
participants [92 NDC subjects vs 92 probable AD 
patients] whilst the validation cohort (Phase 2) was 
made up of a total of 74 participants [25 NDCs vs 25 
probable AD vs 12 MCI vs 12 VaD] (Method S1). Figure 
S1 illustrates the workflow of the present study.  
 
2.2  Microarray 
Total RNA for microarray was extracted from blood 
samples using the RibopureTM – Blood RNA Isolation Kit 
(Ambion, USA) and stored at −80 oC before use. Only 
high-integrity RNA with a cut-off > 7.0, 260/280 and 
260/230 ratios > 1.8 were used for subsequent analysis. 
A total of 184 samples were being analysed for gene 
expression based on a one-colour microarray 
experiment using the commercial oligonucleotide 
microarray slide. The Oligonucleotide probe (single-
stranded RNA fragment) in the slide was 60 bases (mer) 
in length. The Agilent SurePrint G3 Human GE 8x60K 
(Agilent Technologies, CA, USA) with 42,405 
oligonucleotide probes (60-mer), representing 29,271 
annotated genes, were used for hybridisation according 
to the manufacturer’s instructions (Method S3). The 
data has been made available in the National Centre for 
Biotechnology Information’s (NCBI) Gene Expression 
Omnibus (GEO) and are accessible through GEO series 
accession number GSE85426 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE85426).  
 

https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85426
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85426
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2.3  Real-time quantitative-PCR (RT-qPCR) of blood 
samples from the training and validation cohorts  
Only six genes with FC ≥ 2.0 (namely DDIT4, CNOT8, 
SESN1, MAP2K1, ABCA9 and UCP3) were selected based 
on their significant up- or downregulation (p < 0.05) for 
verification of the microarray results using the RT-qPCR 
technique. Thirty AD subjects and 30 NDC subjects were 
randomly selected from the training cohort. Total RNA 
(1 µg) was reverse transcribed (20 µL) to cDNA using the 
Tetro cDNA Synthesis Kit (Bioline, USA). The ensemble 
database was referred for primer design 
(www.ensembl.org) and synthesised by Integrated DNA 
Technologies (Table S1). RT-qPCR was performed in 
triplicates using the Corbett 3000 RotorGene 
(Corbett Research, NSW, Australia) (Method S4). The 
conditions of the RT-qPCR used were based on the two-
step cycling protocol described in the manual of the 
SensiFAST SYBR® No-ROX Kit: initial polymerase enzyme 
activation step (95⁰C for 2 mins), followed by 40 cycles 
of denaturation (95⁰C for 5 secs) and 
annealing/extension (acquired at the end of step; 60⁰C 
for 15 secs). The FC in AD was determined by the Pfaffl 
method (Pfaffl, 2001). The panel of six genes was finally 
evaluated in the validation cohort (independent of 
microarray study, Figure S1), which comprised of 74 
subjects (25 AD, 25 NDC, 12 MCI and 12 VaD).  
 
2.4  Statistical analysis 
Statistical analyses for demographic and biochemical 
data were performed using the GraphPad Prism 
Software version 6.0 (GraphPad Software Inc, CA, USA). 
Data were presented as mean ± SD. All results with a p < 
0.05 were considered to be significantly different. 
Computations of sensitivity and specificity for each 
possible cut-off point of the individual mRNA were 
performed using statistical software package (SPSS 
Version 17.1 for Windows) for analysis.  
  
3.0  RESULTS 
3.1  Training cohort: demography, clinical 
characteristics and medication history  
Table 1 summarises the demography and clinical 
characteristics of the participants from the training 
cohort. A total of 184 participants were recruited.  Only 
180 samples of probable AD and NDCs (n = 90 per group) 
were included in the final data analysis. Four samples 
were excluded due to poor microarray sample quality. 
There was no significant difference in gender between 
the probable AD and NDC groups. The average age for 
probable AD patients and NDC subjects was 77.9 and 
75.2 years old, respectively (p = 0.02). Although age was 
a risk factor for AD, the linear regression analysis found 

no association between the selected genes and age (see 
Subheading 3.2).  
 
The mean Mini-Mental State Examination (MMSE), 
Instrumental Activity of Daily Living (IADL) and Basic 
Activity of Daily Living (BADL) scores were significantly 
different (p < 0.001) between probable AD patients and 
NDC subjects. MMSE scores of 21–26 indicate mild 
dementia, 10–20 indicate moderate dementia and 0–9 
indicate severe dementia (Perneczky et al., 2006). The 
mean MMSE score for probable AD patients was 17.3 
with 40.0% of patients under the mild dementia 
category, 46.7% of patients under the moderate 
dementia category and 13.3% of patients under the 
severe dementia category. As for the NDC group, the 
mean MMSE score was 29.7. The mean IADL and BADL 
scores for NDC were 15.9 and 11.9, respectively. 
Probable AD patients, on the other hand, were 
associated with lower mean scores of IADL (4.7) and 
BADL (9.8), respectively.  Regarding comorbidities, there 
was no significant difference between the groups of 
probable AD patients and NDC. Assessments like clinical 
dementia rating (CDR), were only performed for 
probable AD patients. The total homocysteine (tHcy) 
was significantly (p < 0.001) lower whilst the 
holotranscoabalamine (holoTC) and folate in plasma 
samples were significantly (p < 0.01) higher in probable 
AD subjects when compared to NDC. Probable AD 
patients and NDC subjects seemed equally involved in 
physical activities. Both probable AD patients and NDC 
exhibited no significant difference in physical activities, 
smoking, alcohol consumption and years of education. 
Table S2 shows the medication history of the 
participants from the training cohort. Amongst the 
medications, the usage of acetylcholinesterase inhibitor 
(AChEI), N-methyl-D-aspartate (NMDA) receptor 
antagonists and statins were significantly different (p < 
0.05) between the groups of probable AD patients and 
NDC.   
 
3.2  Training cohort: diagnostic classifier that 
distinguishes AD patients from NDC  
The discovery of significant genes is an essential step in  
constructing a precise classification model. By using the 
Benjamini Hochberg false discovery rate (FDR) multiple 
testing correction with fold change (FC) ≥ 2.0 as cut-off 
at p < 0.05, a total of 299 genes out of 29,271 annotated 
genes were selected. Further to the removal of 
unidentified genes, 172 genes remained, with 132 genes 
being downregulated and 40 genes being upregulated.  
To differentiate gene expression between the two 
groups, Z-score transformation was performed. The 50  
highest-ranked probes based on the Z score (Table S3) 

http://www.ensembl.org/
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
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were used to build a partial least square discrimination 
analysis (PLSDA) model for the training cohort (Table 2). 
The PLSDA model was presented with an overall 
accuracy of 88.3%, sensitivity of 90.0% and specificity of 
86.7%. There was a good separation between the two 
groups (probable AD and NDC) with an area under the 
curve (AUC) of 0.88.  
 
Although the set of 50 genes yielded higher accuracy, 
sensitivity and specificity, using too many genes as a 
panel for biomarker discovery is certainly not practical. 
The PLSDA model was then tested on 25, followed by 12 
and 10 highest ranked genes based on the Z score (Table 
2). The results showed that the set of 12 genes produced 
better accuracy (83.9%), sensitivity (82.2%) and 

specificity (85.6%) than the set of 10 genes in 
distinguishing the groups (Table 2). Of the 12 genes, only 
six genes (CNOT8, DDIT4, SESN1, MAP2K1, ABCA9 and 
UCP3) that were unaffected by the stage of AD, gender 
and ethnicity were selected. For stages of AD, subjects 
were retrospectively graded according to the MMSE 
score: MMSE score of ≥ 27 indicates None, 21-26 
indicates mild, 10-20 indicates moderate, 0-9 indicates 
severe dementia. Besides, the six selected genes were 
also unaffected by age as indicated by the linear 
regression analysis (CNOT8, p = 0.879; DDIT4, p = 0.344; 
SESN1, p = 0.578; MAP2K1, p = 0.412; ABCA9, p = 0.268; 
and UCP3, p = 0.112). The selected six genes from the 
microarray analysis were then verified using RT-qPCR. 

 
 

Table 1: Demographics and clinical characteristics of participants of the training cohort 
 

Parameters Microarray p-value $ 
AD (n = 90) # NDC (n = 90) # 

Gender     
     Male 42 48 0.4      Female 48 42 
Age in year# 77.9 ± 5.7 75.2 ± 7.2 0.02* 
Ethnicity:    
     Chinese 59 56 

0.1      Indian 13 23 
     Malay 18 11 
Education in year † 9.2 ± 5.4 11.1 ± 3.7 0.005* 
MMSE 17.3 ± 6 29.7 ± 1.2 <0.001*** 
CDR 1.6 ± 0.7 NA NA 
BADL  9.8 ± 3.3 11.9 ± 0.1 <0.001*** 
IADL  4.7 ± 3.5 15.9 ± 0.5 <0.001*** 
Total homocysteine  14.8 ± 4.7 12.6 ± 4.1 0.001*** 
Holotranscobalamine  93.4 ± 63.9 120.1 ± 64.0 0.006** 
Folate  8.0 ± 5.2 10.1 ± 4.9 0.008** 
Total cholesterol  4.9 ± 1.1 4.8 ± 1.1 0.6 
Low density lipoprotein  2.5 ± 0.9 2.6 ± 1.0 1.0 
Smoking (yes %) 16 (17.8%) 11 (12.2%) 0.3 
Alcohol (yes %) 20 (22.2%) 20 (22.2%) 1.0 
Physical activity (yes %) 49 (54.4%) 51 (56.7%) 0.8 
Hypertension (yes %) 46 (51.1%) 38 (42.2%) 0.2 
Cardiovascular disease (yes %) 14 (15.6%) 13 (14.4%) 0.8 
Stroke/ history of stroke (yes %) 5 (5.6%) 1 (1.1%) 0.1 
Hyperlipidaemia (yes %) 21 (23.3%) 19 (21.1%) 0.7 
Diabetes mellitus (yes %) 29 (32.2%) 24 (26.7%) 0.4 
Cancer (yes %) 1 (1.1%) 5 (5.6%) 0.1 
Traumatic brain injury (yes %) 3 (3.3%) 8 (8.9%) 0.1 

#mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001;  
†Number of years spent at school, college or university; 
$The respective p-value of categorical data was derived from chi-squared test whereas the respective p-value of continuous 
data was derived from independent t-test; 
Abbreviations: AD, Alzheimer’s disease; BADL, basic activities of daily living; CDR, clinical dementia rate; IADL, instrumental 
activities of daily living; MMSE, Mini-mental State Examination; NA, data not available; NDC, non-dementia controls; SD, 
standard deviation. 
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Table 2: Prediction based on the PLSDA using microarray data*  
 

Number of 
genes 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) Gene Name 

50 88.3 90.0 86.7 (Table S2) 

25 85.0 83.3 86.7 

ULK3, PSMG3, POLR2B, RTCB, CCND2, SPG7, SEC16A, ACTG1, 
TTC38, SNORA73A, XLOC_014512, SNORD3B-1, DEFA3, 

CNOT8, DDIT4, SESN1, MAP2K1, SPOCD1, C5AR1, CAMP, 
HAPLN2, FBRSL1, UCP3, IQSEC3, ABCA9 

12 83.9 82.2 85.6 CNOT8, DDIT4, SESN1, MAP2K1, SPOCD1, C5AR1, CAMP, 
HAPLN2, FBRSL1, UCP3, IQSEC3, ABCA9 

10 78.3 78.9 77.8 CNOT8, DDIT4, SESN1, MAP2K1, SPOCD1, CAMP, HAPLN2, 
UCP3, IQSEC3, ABCA9 

*Values are based on GeneSpring PLSDA from 90 AD and 90 NDC subjects 
 

 
To verify the microarray results, 60 subjects (30 AD vs 30 
NDC) were randomly selected from the training cohort. 
The expression levels of the six genes (Figure 1),  which 
were significantly different (p < 0.05) between AD and 
NDC groups from the microarray analysis, yielded a 
similar trend in the RT-qPCR (Pearson’s r = 0.954, p = 
0.0002). The FC and regulation of the genes are as 
follows: CNOT8 (array = 2.40, RT-qPCR = 5.75); MAP2K1 
(array = 2.35, RT-qPCR = 3.80); DDIT4 (array = 2.29, RT-
qPCR = 2.94); SESN1 (array = 2.09, RT-qPCR = 3.29); 
ABCA9 (array = -2.13, RT-qPCR = -4.55) and UCP3 (array 
= -3.07, RT-qPCR = -3.23). The RT-qPCR method showed 
higher FC  than the FC obtained using the microarray, 
irrespective of whether the genes were upregulated or 
downregulated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Expression levels of the six selected genes between 
AD and NDC groups by microarray and RT-qPCR of the training 
cohort. The FC and regulation of the genes are as follows: 
CNOT8 (array = 2.40, RT-qPCR = 5.75); MAP2K1 (array = 2.35, 
RT-qPCR = 3.80); DDIT4 (array = 2.29, RT-qPCR = 2.94); SESN1 
(array = 2.09, RT-qPCR = 3.29); ABCA9 (array = -2.13, RT-qPCR 
= -4.55) and UCP3 (array = -3.07, RT-qPCR = -3.23). 
 
3.3  Training cohort: identification of pathways and 
biologically relevant network based on microarray  

The 172 genes (p < 0.05) with FC > 2 from the 
GeneSpring analysis were then determined for the 
pathways involved by using the IPA software. A total of 
15 substantively dysregulated canonical pathways were 
recognised (Table S4) and they included Granzyme A 
signalling, chemokine signalling, STAT3 signalling, 
mitochondrial dysfunction, lipid signalling (protein 
kinase A) and various nervous system related signalling 
(e.g., axonal guidance and gap junction signalling). The 
top-ranked biological functions comprised of infectious 
disease, respiratory disease, inflammatory response, 
cell death and survival, cell-to-cell signalling and 
interaction and organ and tissue morphology. A total of 
five networks and interactions were identified by the 
Ingenuity Pathway Analysis (IPA) based on the functional 
roles of the genes. The genes selected for RT-qPCR 
validation amongst the probable AD participants were 
from the top four molecular networks: DDIT4, MAP2K1 
(network 1), CNOT8 (network 2), UCP3 (network 3), 
ABCA9, SESN1 (network 4). Functional annotation was 
performed using the Database for Annotation 
Visualization and Integrated Discovery (DAVID) web-
accessible program. Out of the 172 genes, 139 genes 
were identifiable by DAVID, out of which 41 belong to 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. DAVID functional annotation chart analysis of 
genes showed substantial enrichment of acetylation and 
nucleosome. 
 
3.4  Validation cohort: demography and clinical 
characteristics  
The validation cohort (Table 3) was made up of 30 
(40.5%) male and 44 (59.5%) female participants. The 
MMSE, IADL and BADL scores for the AD patients were 
significantly lower when compared to the NDC 
individuals (p < 0.001), followed by VaD as well as MCI. 
No significant difference was observed for all other 
tested parameters. 

https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
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Table 3: Demographic and clinical characteristics of participants of the validation cohort 
 

Variables                                                                                                
Test cohort (RT-qPCR) 

p-value $ AD 
(n = 25) 

MCI 
(n = 12) 

VaD 
(n = 12) 

NDC 
(n = 25) 

Gender      
     Male 13 6 9 12 

0.06      Female 12 6 3 13 
Age in year (mean ± SD) 76.8 ± 7.3 76.6 ± 4.7 73.2 ± 5.0 72.8 ± 5.4 0.1 
Ethnicity      
     Chinese 18 9 5 8 

0.06      Indian 4 1 2 8 
     Malay 3 2 5 9 
Education in year (mean ± SD) † 9.6 ± 6.6 11.2 ± 4.1 10.4 ± 7.1 10.0 ± 5.9 0.9 
Social class (high/middle/lower) 1/5/19 3/4/5 2/6/4 2/12/11 0.08 
MMSE (mean ± SD) 19.7 ± 5.2 27.6 ± 1.0 20.7 ± 5.1 29.6 ± 0.8 0.0001 
CDR (mean ± SD) 1.2 ± 0.4 (13) 0.5 ± 0 (9) 0.8 ± 0.3 (5) NA NA 
BADL (mean ± SD) 11.0 ± 1.9 11.4 ± 0.7 9.2 ± 3.8 16.0 ± 0 0.001 
IADL (mean ± SD) 6.5 ± 3.7 8.9 ± 4.8 5.8 ± 5.1 12.0 ± 0 0.0001 
Total homocysteine (mean ± SD) 13.3 ± 4.4 12.4 ± 3.4 13.6 ± 6.4 13.3 ± 4.9 1.0 
Holotranscobalamine (mean ± SD) 123.8 ± 78.2 83.68 ± 54.0 93.4 ± 41.9 141.7 ± 68.7 0.06 
Folate (mean ± SD) 9.7 ± 5.5 8.3 ± 4.4 6.1 ± 1.8 10.9 ± 5.2 0.07 
Total cholesterol (mean ± SD) 5.3 ± 1.2 5.2 ± 1.1 5.0 ± 1.1 5.4 ± 1.1 0.8 
Low density lipoprotein (mean ± SD)   3.0 ± 1.1 3.0 ± 0.9 2.7 ± 0.5 3.2 ± 1.0 0.5 
Smoking (yes %) 2 (8.0%) 0 (0%) 3 (25.0%) 5 (20.0%) 0.09 
Alcohol (yes %) 5 (20.0%) 3 (25.0%) 2 (16.7%) 8 (32.0%) 0.8 
Physical activity (yes %) 15 (60.0%) 4 (33.3%) 6 (50.0%) 16(64.0%) 0.7 
Hypertension (yes %) 7 (28.0%) 3 (25.0%) 4 (33.3%) 4 (16.0%) 0.2 
Cardiovascular disease (yes %) 2 (8.0%) 2 (16.7%) 2 (16.7%) 1 (4.0%) 0.2 
Stroke / history of stroke (yes %) 3 (12%) 1 (8.3%) 2 (16.7%) 4 (16.0%) 0.8 
Hyperlipidemia (yes %) 3 (12.0%) 1 (8.3%) 2 (16.7%) 4 (16.0%) 0.8 
Diabetes mellitus (yes %) 3 (12.0%) 2 (16.7%) 2 (16.7%) 2 (8.0%) 0.5 
Cancer (yes %) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 
Traumatic brain injury (yes %) 1 (4.0%) 0 (0%) 0 (0%) 1 (4.0%) 0.9 

†Number of years spent at school, college or university;  
$The respective p-value of categorical data was derived from chi-squared test whereas the respective p-value of continuous 
data was derived from independent t-test; 
Not all CDR score available for the subjects, the number of subjects analysed for CDR score was shown in parentheses; 
Abbreviations: AD, Alzheimer’s disease; BADL, basic activities of daily living; CDR, clinical dementia rate; IADL, instrumental 
activities of daily living; MMSE, Mini-mental State Examination; NA, data not available; NDC, non-dementia controls; SD, 
standard deviation. 
 
 
3.5  Validation cohort: Prediction of AD based on the 
expressions of the six selected genes using RT-qPCR  
Six selected genes were analysed using the RT-qPCR 
technique (Table S5). Figure 2a illustrates the FC of gene 
expression in probable AD, MCI and VaD relative to NDC. 
The FC (AD vs NDC) of the upregulated genes (CNOT8, 
DDIT4, SESN1 and MAP2K1) were 9.21 (p = < 0.0001), 
3.24 (p = 0.0244), 6.32 (p < 0.0001) and 9.07 (p = 0.0001), 
respectively. For the FC (AD vs NDC) of the 
downregulated genes (ABCA9 and UCP3), on the other 
hand, were -2.43 (p = 0.043) and -2.07 (p < 0.0001), 

respectively. Except for the SESN1, the FC (MCI and VaD 
vs NDC) of ABCA9, UCP3, CNOT8, DDIT4 and MAP2K1 
expression levels were also significantly different (p < 
0.05). The SESN1 gene expression was not significantly 
different between VaD patients (p = 0.468) and NDC.  
 
It was found that the gene expression of ABCA9 was able 
to correctly classify probable AD patients at a sensitivity 
and specificity of about 91% and an AUC of 0.94 (Table 
4). The respective sensitivity and specificity of the 
remaining genes were between 73-86% and 74-83%, 

https://neuroscirn.org/ojs/index.php/nrnotes/article/view/262
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respectively, with AUC ranging between 0.81-0.93. 
When the classifier was based on a combination of all six 
genes (Table 4), 41 out of 50 subjects were correctly 
classified, yielding an accuracy of 82.0%. More 
specifically, 21 of 25 (sensitivity of 84.0%) probable AD 

patients and 20 of 25 (specificity of 80.0%) NDC 
participants were correctly classified. The Positive 
Likelihood Ratio (PLR) was 8.20. The combined six genes 
produced an AUC value of 0.86.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
Figure 2: The expression of six genes in the validation cohort and the efficacy of the identified disease classifier in other 
neurodegenerative groups. (A) Bars indicate mean fold of 74 participants: 25 probable AD, 12 MCI, 12 VaD and 25 NDC subjects. 
The NDC subjects are set at 1. Bars with common superscripts differ significantly at *p < 0.05 AD vs NDC, #p < 0.05 MCI vs NDC, 

+p < 0.05 VaD vs NDC. Before generating the graph, the raw data were log transformed as the log transformed data were 
suitable for plotting graphs. The data was found to be non-normally distributed as determined by the Wilks-Shapiro test for 
normality, thus the Mann-Whitney U test was used. (B) Gene expression scores between probable AD patients (in red) and 
MCI (in black). In the test cohort, 10 of the 12 MCI subjects were assigned to the correct class with the specificity of 83.3% for 
MCI as compared to probable AD. (C) Gene expression scores between probable AD patients (in red) and VaD (in black). Nine 
of 12 VaD patients were correctly classified NDC, with the specificity of 75.0% when compared to probable AD.  
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Table 4. Predictive capacity of six AD- associated genes from probable AD patients (n = 25) and NDC (n = 25) 
 

Gene Name Sensitivity Specificity Accuracy AUC PLR 
ABCA9 90.90 91.30 91.10 0.94 9.57 
UCP3 77.30 73.90 75.6 0.81 6.06 

CNOT8 72.70 78.30 75.60 0.84 3.40 
DDIT4 77.30 77.30 77.30 0.80 3.25 
SESN1 86.40 82.60 84.40 0.93 6.06 

MAP2K1 80.00 78.30 79.10 0.84 4.19 
Combination of all six genes 84.00 80.00 82.00 0.86 8.20 

Abbreviations: AUC, Area under curve; PLR, Positive likelihood ratio; ABCA9, ATP Binding Cassette Subfamily A Member 9; UCP3, 
Uncoupling Protein 3; CNOT8, CCR4-NOT Transcription Complex Subunit 8; DDIT4, DNA-damage-inducible transcript 4; SESN1, 
Sestrin 1; MAP2K1, Mitogen-Activated Protein Kinase 1 
Note: The analysis was based on individual gene using SPSS software 
 
 
In terms of correlation between gene expression and 
MMSE scores (Figure 3), ABCA9, MAP2K1 and SESN1 
were strongly correlated with MMSE scores which 
indicated the severity of the disease (ABCA9, r = 0.72, p 
= 0.0002; MAP2K1, r = -0.74, p = 0.0002; SESN1, r = -0.73, 
p = 0.0001). Lower expression of the ABCA9 gene was 
associated with a lower MMSE score whereas higher 

expression of MAP2K1 and SESN1 genes was associated 
with lower MMSE scores. Other genes showed a 
moderate correlation between their expression level 
and MMSE scores (UCP3, r = 0.47, p = 0.03; CNOT8, r = -
0.65, p = 0.001 and DDIT4, r = -0.62, p = 0.002). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The correlation between MMSE score against six selected genes for RT-qPCR of the validation cohort. All genes 
showed a significant correlation with MMSE score in AD patients and NDC (ABCA9, r = 0.72; p = 0.0002; UCP3, r = 0.47; p = 0.03; 
CNOT8, r = -0.65; p = 0.001; DDIT4, r = -0.62; p = 0.002; SESN1, r = -0.73; p = 0.0001; MAP2K1, r = -0.74; p = 0.0002). 
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3.6  Validation cohort: performance of diagnostic 
classifier for MCI and VaD  
The MCI group was included in the test cohort to 
evaluate whether the diagnostic blood gene expression 
classifier could be a biomarker for the early stage of 
cognitive dysfunction. Of the 12 MCI subjects, 10 
individuals were classified as MCI (specificity of 83.3%) 
whereas two were as probable AD (Figure 2B). Although 
the number of subjects was relatively low, the present 
findings indicated the potential predictive power of the 
identified gene expression signature. As a high 
percentage of MCI was expected to possess a likely AD-
endpoint, the current results showed that they were 
sufficiently different from probable AD to be classified 
as MCI. 
 
The AD classifier appeared to make only a small 
distinction, in favour of classifying VaD subjects who 
shared a lot of pathological neurodegeneration 
processes and were close to be diagnosed as probable 
AD. Of the 12 VaD patients with acceptable RT-qPCR 
quality, 9 (75.0%) were correctly predicted as non-AD by 
the disease classifier (Figure 2C). These results might 
represent a marker of diseases sharing common 
aetiology.  
 
4.0  DISCUSSION 
Given that a list of <10 biomarkers would be 
mathematically more robust and more practical for 
clinical testing purposes (Xia et al., 2013), the present 
study selected six genes (DDIT4, CNOT8, MAP2K1, 
SESN1, ABCA9 and UCP3), which were not associated 
with stage of disease, gender or ethnicity, for validation 
using RT-qPCR in both training and validation cohorts. 
Validation of these six genes gave rise to excellent 
sensitivity (84.0%), specificity (80.0%), accuracy (82.0%) 
and AUC of 0.86. ABCA9 gene, in particular, 
discriminated probable AD patients from NDCs with high 
sensitivity (90.9%), specificity (91.3%), accuracy (92%), 
AUC of 0.94 and high correlation with MMSE test (r = 
0.72, p = 0.002).  
 
Several studies on gene expression data have uncovered 
valuable patterns from biopsy or autopsy-based samples 
but these findings are difficult to be extrapolated to 
clinical settings. Some of the early studies on blood gene 
expression in AD had successfully identified a list of 
biomarkers with sensitivity and specificity > 80.0% (Bai 
et al., 2014; Booij et al., 2011; Fehlbaum-Beurdeley et 
al., 2010; Maes et al., 2007). The expression values of 
AD-related genes obtained from recent studies using 
blood samples of AddNeuroMed1 and 2 (ANM1 and 
ANM2) datasets also exhibited AUC >0.8 (Lee & Lee, 

2020) and could classify AD from healthy control. Voyle 
et al. (2016), who used gene expression data from the 
ANM and Dementia Case Registry (DCR) cohorts, 
obtained an AUC of 0.74. There was, however, another 
gene expression study (Patel et al., 2020) that had found 
biomarkers with low sensitivity and low specificity 
(<80.0%). The list of significantly dysregulated genes in 
probable AD patients obtained in this study was, 
however, different from those of previous AD blood-
based gene expression studies (Griswold et al., 2020; 
Lunnon et al., 2013; Nho et al., 2020; Niculescu et al., 
2020; Ou et al., 2021; Panitch et al., 2022; Park et al., 
2020; Park et al., 2021; Patel et al., 2019). The present 
gene enrichment analysis found dysregulated pathways 
related to oxidative stress, mitochondrial dysfunction, 
apoptosis, inflammation, DNA damage and perturbed 
lipid metabolism in probable AD. In spite of the different 
genes obtained when compared to the previous studies, 
inflammation and mitochondrial dysfunction seemed to 
be the common pathways involved in AD pathogenesis 
(Griswold et al., 2020; Lee & Lee, 2020; Lunnon et al., 
2012; Voyle et al., 2016).  
 
The dysregulated genes were analysed to determine the 
diagnostic potential of whether these genes were part 
of AD pathology or unspecific to the pathology by 
calculating the changes in gene expression, sensitivity 
and specificity of selected genes. The comparison was 
performed between probable AD patients and NDC 
subjects and also other neurological patients such as 
MCI and VaD. The importance of using other 
neurodegenerative diseases (MCI and VaD as in the 
present study) was to test whether the selected genes 
were specific towards only probable AD. MCI, which is a 
transition between normal aging and early dementia 
(Lovell & Markesbery, 2007), is regarded as a risk of 
dementia, especially AD. In spite of the small sample 
size, the present results of the six genes showed good 
separation in MCI. Profiles of ABCA9, SESN1 and CNOT8 
genes, in particular, supported the hypothesis that MCI 
is a transition between normal aging and early 
dementia. DDIT4 gene was upregulated in MCI and AD, 
with a greater extend of upregulation in MCI. 
Nevertheless, the upregulation of UCP3 gene and 
downregulation of MAP2K1 gene exhibited profiles 
opposite to that in probable AD patients.  
 
The present study had also included VaD in the test 
cohort. VaD is a syndrome and pathologic subtype that 
includes ischaemic and haemorrhagic strokes, cerebral 
hypoxic-ischaemic events and senile 
leukoencephalopathic lesions (Román et al., 1993). VaD 
was chosen in the present study because it is the second 
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commonest type of dementia. By using the six selected 
genes, this study found the specificity of VaD to be 75%. 
VaD may possess only minor neuropathological changes 
of AD (Meyer et al., 2002). As such, the specificity of VaD 
in the current study was believed to adequately indicate 
that the constructed classification algorithm was specific 
in picking up the changes in gene expression that might 
have occurred in the blood of AD patients. There is, 
however, a lack of previous study that had used VaD as 
part of their test cohort. 
 
Figure 4 illustrates the involvement of the six genes in 
pathways related to the pathogenesis of AD. Chronic 
activation of the NMDA receptor may upregulate the 
mitogen-activated protein kinase (Amadoro et al., 2006; 
Wan et al., 2012) via extracellular-signal-regulated 
kinase (ERK) phosphorylation (Sun et al., 2016) (Figure 
4A) that could be accompanied by increased MAP2K1 
expression that may cause inflammatory response 
(Wang et al., 2014). Dysregulated mitochondria which 
were manifested through the downregulation of  UCP3 
gene (Figure 4B), would result in oxidative stress 
(Thanan et al., 2015)  and DNA damage.  
 
With regards to oxidative stress, upregulation of  SESN1 
gene has been identified as an implication of 
perturbation of the mitochondria process in AD (Figure 
4C). Oxidative stress could be derived from excessive 
mitochondria ROS production. Their reactive end 
products could damage DNA through the upregulation 
of the DDIT4 gene (Figure 4D). Lipid dysregulation 
(Figure 4E), which was primarily found to be related to 
AD (Wong et al., 2017), could be associated with 
downregulation of  ABCA9 gene. In this study,  ABCA9 
gene was found to exhibit the highest sensitivity and 
specificity. This warrants further investigation to 
elucidate the function of this gene in AD pathogenesis. 
ABCA9 gene may play a role in monocyte differentiation 
and lipid homeostasis (Piehler et al., 2002). 
Transcriptional expression of this gene could be induced 
during monocyte differentiation into macrophages and 
suppressed by cholesterol import. As an ATP-binding 
cassette (ABC) transporter gene, ABCA9 plays essential 
roles in mediating cholesterol efflux by  regulating 
cellular cholesterol homeostasis (Li et al., 2013).  
 
Although cholesterol is a major component of the 
mammalian cell membrane, the accumulation of 
excessive cholesterol is toxic to cells. This would in turn, 
impair cell signalling which would cause impairment in 
synaptic integrity and neurotransmission. Recent 
findings in AD research indicated disturbance of Aβ 

exportation at the brain’s barriers, which was 
physiologically facilitated by the ABC transporter 
superfamily, might play a fundamental role in AD 
initiation and progression. Previous studies showed 
several ABC transporters, such as ABCA1, ABCB1, 
ABCG1, ABCG5, and ABCG8 to play essential roles in 
mediating cholesterol efflux by the regulation of cellular 
cholesterol homeostasis (Chen et al., 2011; ElAli & 
Rivest, 2013; Li et al., 2013). Only little is known about 
the function of the subgroup of ABCA6-like transporters 
which form a compact gene cluster located on chr 
17q24.2-3. This cluster comprises the transporters 
ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10. Although 
ABCA9 is expressed at detectable levels in the brain and 
is likely involved in lipid transport processes, the 
potential implication in neurodegeneration remains 
purely speculative at this point (Pereira et al., 2012, 
2018). On the other note, all putative mechanisms that 
lead to neuronal death in AD (by apoptosis) could be 
correlated with the upregulation of CNOT8 gene 
expression (Figure 4F). Any functional defects in the 
regulation of the deadenylation activity by CNOT8 gene 
could induce p53 level, which could lead to apoptosis. 
The analysis revealed that molecular perturbation in AD 
patients tend to be shared widely, vary significantly and 
substantially overlaps within several confounding 
factors.  
 
The present study acknowledges several limitations. 
There was a lack of clinical information from 
neuroimaging data, CSF analysis and more established 
dementia-rating scale. Besides, this study also 
encountered challenges in identifying and characterising 
unknown genes. The microarray technique relies upon 
existing knowledge about the genome sequence and is 
limited by the availability of only several databases. 
Furthermore, microarray has limited dynamic detection 
range owing to background and saturation signals. Given 
these limitations, the results reported in this study are 
exploratory and should be interpreted conservatively. 
On another notes, the present study acknowledges the 
usefulness of longitudinal gene expression studies in 
supporting AD diagnosis and monitoring from the 
prodromal to the symptomatic stage. As such, it would 
be beneficial for future validation work to include more 
patients with well-characterised MCI and other 
dementing disorders (PD, Lewy Body Dementia, VaD) as 
well as asymptomatic patients with preclinical disease to 
validate AD-specific biomarkers.  
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Figure 4: Genes in AD-related biological pathways. AD-related pathways could be accelerated via several pathways that lead 
to degeneration. (A) Activation of immune response by stressors such as Aβ and tau activates physiological activators of 
extracellular-signal-regulated kinase (ERK) via elevation of MAP2K1 gene, leading to aberrant protein phosphorylation and 
enhanced inflammation. (B) Dysregulated mitochondria resulting from inhibition of UCP3 gene could lead to increased 
mitochondrial reactive oxygen species (ROS) production. (C) ROS causes oxidative stress, leading to brain oxidative impairment 
with the involvement of SESN1 gene. (D) Oxidative DNA damage have been largely found in brain region of AD associated with 
the upregulation of DDIT4 gene. (E) Lipid dysregulation related to the downregulation of ABCA9 gene would cause impairment 
in cell homeostasis and neurotransmission. Accumulation of excessive cholesterol is toxic to cells and could lead to neuronal 
cell death. (F) Multiple cellular functions of p53 appear to be associated with increased CNOT8 gene expression that could lead 
to induction and regulation of cell cycle arrest and apoptosis. Deadenylation activity by CNOT8 could induce p53 level in 
response to hypoxia, DNA damage and then cell death through apoptosis.  
 
 
5.0  CONCLUSIONS 
The present study had revealed six genes (i.e., ABCA9, 
UCP3, MAP2K1, SESN1, CNOT8 and DDIT4) that might be 
implicated in AD pathogenesis. This gene panel seems to 
be associated with inflammation, mitochondrial 
dysfunction, oxidative injury, DNA damage and 
apoptosis. Another important pathway highlighted in 
this study is the lipid metabolism pathway through the 
downregulation of ABCA9 gene, that would lead to 
neuronal cell death. 
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Blood biochemical profile and RNA extraction, Method S3: 
Microarray, Method S4: Real time quantitative-PCR (RT-qPCR) 
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