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ABSTRACT: The use of in vitro model for screening pharmacological compounds or natural products 

has gained global interest.  The choice of cells to be manipulated plays a vital role in coming up with 

the best-suited model for specific diseases, including neurodegenerative diseases (ND). A good in 

vitro ND model should provide appropriate morphological and molecular features that mimic ND 

conditions where it can be used to screen potential properties of natural products in addition to 

unravelling the molecular mechanisms of ND.  In this mini review, we intend to demonstrate two 

prospective stem cell lines as the potential cell source for in vitro ND model and compare them to 

the commonly used cells.  The common source of cells that have been used as the in vitro ND models 

is discussed before going into details talking about the two prospective stem cell lines.  
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1. INTRODUCTION 

Neurodegenerative diseases (ND) is the term used for 

various conditions, primarily marked by the loss of 

nerve cells, resulting in functional impairment of 

neurons. The progressive degeneration and/or death of 

nerve cells and the limited ability of the brain to self-

repair subjects ND to be incurable. As degenerative 

diseases are often linked to differentiation stimulation, 

many therapeutic strategies for neurodegenerative 

diseases have been studied with emphasis on the 

regulation of cell differentiation [1]. Although the 

neurological mechanisms of action are still not fully 

understood, it was previously reported that the cell 

differentiation, survival, protection and regeneration 

were shown to be influenced by the neurotrophins and 

growth factors, especially the nerve growth factors 

(NGF) and brain-derived neurotrophic factors (BDNF) 

[2].  

 

Herbal medicine research has gained increasing interest 

globally for their therapeutic potentials. Extensive 

practise of herbal medicine provides promising 

approaches to current therapies for ND. Researchers 

revealed that the presence of phytochemicals in herbal 

extracts including total alkaloids, phenolics, flavonoids, 

tannins and terpenic acids, exhibit promising anti-

inflammatory, antioxidant, neuroregenerative and 

neuroprotective properties, as well as 

anticholinesterase and neurotrophic-like activities with 

lesser adverse effect. Furthermore, some of them 

promote cell survival and improve cognitive functions 

by directly regulating amyloidogenesis and apoptotic 

signalling pathways. Some promising natural products 

that may have therapeutic potentials for the treatment 

of ND and the cell lines used as the in vitro models are 

summarised in Table 1. 

 

Hence, screening of pharmacological compounds or 

herbal extracts for their neuro-pharmacology 

properties would provide the means to gain knowledge 

on the morphological features and molecular 

mechanisms of ND in addition to gaining insights 

towards the development of various types of treatment 

for these diseases.  Initial screening of these properties 

could be first done through the use of appropriate in 

vitro ND model, thus creating the best suited in vitro 

models for ND in cell culture is invaluable and essential. 

Table 1 shows the cell lines that have been used as ND 

models to screen the neurotherapeutic potential of 

phytochemicals from natural products. There are 

several approaches to generating in vitro models for 

neurodegenerative diseases based on aetiology and 

mechanisms involved in the diseases. In attempting to 

mimic the same phenomenon occurring in animal 

models of ND, the synthetic compounds/toxins which 

possess neurotoxicity activity are introduced to cultured 

cells to induce cell injury and activate the apoptotic 

signalling pathways that are correlated with the disease 

of interest. The most commonly used synthetic 

compounds/toxins are (1) β-amyloid, (2) glutamate,  (3) 

6-hydroxydopamine (6-OHDA), (4) 1-methyl-4-

phenylpyridine (MPP+), (5) rotenone, and (6) hydrogen 

peroxide (Table 2). Another approach is by genetic 

modification such as (1) Presenilin 1 (PSEN1); (2) 

Presenilin 2 (PSEN2) [3]; and (3) Amyloid precursor 

protein genes [4].  Besides the choice of a neurotoxic 

agent used, the source for neural/neuronal cells also 

plays an important role in deciding the appropriate in 

vitro model to use. 

 

In this research note, we aim to demonstrate the 

suitability of using stem cell lines, namely the mouse 

embryonic (46C) and rat full-term amniotic fluid (R3) 

stem cell lines, as the prospective source of neuronal 

cells in creating the models that could later be used to 

aim for screening neuro-pharmacology properties of an 

extract or natural compound, as opposed to the 

commonly used cell lines.  In doing so, the features and 

properties of the commonly used cell lines as the cell 

source for developing in vitro model for ND is discussed 

and compared to that of 46C and R3 lines. 

 

2. COMMONLY USED CELL LINES FOR IN VITRO ND 

MODEL 

The commonly available in vitro models that are widely 

used for ND studies come from three cell sources: (1) 

Human neuroblastoma (SH-SY5Y); (2) immortal rat 
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hippocampal; and (3) Induced pluripotent stem cell 

lines.  

Table 1: Neurotherapeutic potential of phytochemicals from natural products 

 

Plant source Phytochemical Pharmacological effects Medicinal use Ref(s) 
Ginkgo biloba Ginkgolide B ROS scavenger inhibits NF-ĸB activation 

and PI3K/Akt signalling, inhibition of 
apoptotic protein expression, activates 
Wnt/β-catenin signalling pathway.  
 
In vitro model used: Rat primary 
cerebellar neuron cells; neural stem cells 
of the postnatal mammalian 
subventricular zone; rat primary 
hippocampal neuronal cells; human 
neuroblastoma (SH-SY5Y) cells. 

Neuroprotection, 
neurodegeneration 
disease, antioxidant 

[5-9] 

Vitis vinifera, 
Vaccinium 
macrocarpon 

Resveratrol Antioxidant promotes the decomposition 
and clearance of intracellular Aβ 
aggregates, inhibits glial cell activation, 
activates SIRT1 expression, inhibits iNOS, 
COX-2, NF-ĸB activation. 
 
In vitro model used: Rat 
pheochromocytoma (PC12) cells; rat 
primary cortical mixed glial cells; human 
neuroblastoma (SH-SY5Y) cells; rat 
primary neuronal cells. 

Neuroprotection, 
neurodegeneration 
disease, antioxidant 

[10-21] 

Huperzia 
serrata 

Huperzine A * AChE inhibitor, reduces protein levels of 
IL-1β and TNF-α, inhibits NF-ĸB activation, 
and increases BDNF and NGF level. 
 
In vitro model used: Rat 
pheochromocytoma (PC12) cells; rat 
primary cortical neuronal cells. 

Neuroprotection, 
neurodegeneration 
disease, antioxidant, 
anti-inflammation 

[22-26] 
 

Rhodiolia Rosea Salidroside Inhibits Aβ-induced oxidative stress 
through activation PI3K/Akt signalling, 
suppresses the expression of MAPK and 
JNK, ROS scavenger. 
 
In vitro model used: Human 
neuroblastoma (SH-SY5Y) cells; murine 
BV-2 microglial cells; rat 
pheochromocytoma (PC12) cells; rat 
primary hippocampal neuronal cells. 

Neuroprotection, 
neurodegeneration 
disease, antioxidant 

[27-34] 

Curcuma longa Curcumin Increases BDNF level, ROS scavenger, 
prevents Aβ fibrils, inhibits COX-2 and NF-
ĸB activation activates PKC/ERK-mediated 
CREB regulation. 
 
In vitro model used: Rat 
pheochromocytoma (PC12) cells; human 
neuroblastoma (SH-SY5Y) cells 

Antioxidant, anti-
inflammation, 
neurogenesis, 
neuritogenesis 

[35-41] 

* AChE: Acetylcholinesterase 
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Table 2: The most common synthetic compoundsm/toxins used in ND in vitro models 

 

Common synthetic compounds/toxins Disease model * References 

β-amyloid AD [4,42-44] 

Glutamate AD [45] 

6-hydroxydopamine (6-OHDA) PD [46] 

1-methyl-4-phenylpyridine (MPP+) PD [46] 

Rotenone PD [47] 

Hydrogen peroxide ND associated with oxidative stress, 
especially PD and AD 

[13,27,34,48-51] 

* AD = Alzheimer ’s disease; PD = Parkinson’s Disease 

 

Human neuroblastoma cell lines (SH-SY5Y) has been 

used widely in neuroscience research. SH-SY5Y cells are 

a subclone of the parental neuroblastoma SK-N-SH cell 

lines that were derived from bone marrow biopsies, 

consists of neuroblast-like and epithelial-like cells [52]. 

SH-SY5Y cells consist 47 chromosomes, making it a 

stable karyotype and able to differentiate into mature 

neurons by induction with retinoic acid (RA) or 

neurotrophins such as brain-derived neurotrophic 

factor (BDNF) [53]. SH-SY5Y has been used to establish 

in vitro model for Alzheimer Disease (AD) and Parkinson 

Disease (PD), as well as other neurodegenerative 

diseases. SH-SY5Y can express functional neuronal 

subtypes when differentiate, as such into synaptic 

structures, functional axonal vesicle transport and 

express neuronal markers NeuN, class III β-tubulin and 

synaptic vesicle protein 2 (SV2) [54]. A study conducted 

by Constantinescu and coworkers showed that SH-SY5Y 

was successfully induced into dopaminergic neurons by 

RA at a concentration of 10 µM for a few days [55]. This 

finding was in a good agreement with another study 

that reported the presence of tyrosine hydroxylase (TH) 

(a marker for dopaminergic neurons) gene expression 

post-differentiation [56]. 

 

Besides RA, the SH-SY5Y cell line also has been used as 

a model to study PD when exposed to rotenone, a 

specific inhibitor of mitochondrial complex I that can 

cause mitochondria impairment leading to increasing in 

oxidative stress. The administration of rotenone has 

been observed to induce cell apoptosis and 

accumulation of reactive oxidative species (ROS) 

[49,57,58].  Another study also showed that treatment 

of SH-SY5Y with rotenone might involve mitochondria- 

and endoplasmic reticulum-dependent caspase 

pathways, promoting cell death in concentration- and 

time-dependent manner [57]. Rotenone-induced SH-

SY5Y neurons were also used to evaluate the protective 

effect of antioxidant property of the phenolic 

compound. The phenolic compound was found to exert 

protective effects against the cytotoxicity of rotenone 

and increased the cellular GSH contents [58]. 

 

Interestingly, Aβ-induced oxidative stress in SH-SY5Y 

also elicits the same mechanisms [28] as observed in 

rotenone-induced cell damage. Using this model, 

treatment with antioxidant salidroside was found to 

restore cell survival and enhance the expression of 

antioxidant genes [28]. In another study, the SH-SY5Y 

cell line was used to test the effect of asiatic acid of 

Centella asiatica in inhibiting glutamate-induced SH-

SY5Y from undergoing apoptosis and reducing ROS 

activity when compared to the untreated cells [45]. 

These exciting features of a cytotoxic-induced SH-SY5Y 

cell line may benefit in finding the treatment regime for 

PD and AD. However, this model does not mimic the real 

scenario in human ND due to different cell signalling 

pathways by cancer genes [59]. 

 

Due to the high demand for using normal brain cells in 

vitro, that express specific neuronal subtypes, immortal 

rat hippocampal cell lines were studied. These cells 

were immortalised using retroviral-mediated oncogene 

transduction Simian virus 40 large tumour antigens [60]. 
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The cells have two distinct properties which are: (1) 

restricted proliferation; and (2) ability to differentiate 

after completion of neuronal division. Immortal rat 

hippocampal cell lines exhibit neural subtype markers 

such as glial fibrillary acid protein (GFAP), 

Neurofilament protein (NFP) and synthesise 

neurotrophic factors [60]. Since the cells were 

originated from the hippocampus, which is responsible 

for cognitive and memory function, these cell lines are 

suitable for AD model. These cells have been used to 

evaluate the neuroprotection activity of herbal 

medicines intended for the treatment of ND. A study 

showed that four traditional Oriental medicinal herbs 

protect the rat hippocampal cells from glutamate-

induced toxicity by reducing the ROS production and 

increasing cell viability [61]. Although these cell lines 

provide a promising approach to evaluate the 

neuroprotection and neuroregeneration potential of 

herbal medicines, its action is limited to the animal AD, 

and it cannot induce the full range of deficits seen in 

human with AD due to lack of receptor for human Aβ 

peptides [59]. 

 

The reprogramming of the somatic cells to induced 

pluripotent stem cells (iPSCs) to model ND pathogenesis 

in vitro has been established and accepted worldwide. 

The recent review article discusses the potential use of 

PD-specific iPSCs to model the pathogenesis of the 

disease due to genetic variants carried in iPSCs [62]. In 

a comparison study between the ability of iPSC and 

embryonic stem cells (ESCs) to differentiate into 

dopaminergic neurons revealed that iPSCs show higher 

differentiation ability compared to ESCs [63]. These 

findings show that iPSCs can provide a promising source 

for dopaminergic neurons in modelling PD in vitro. A 

recent study shows that disease-/patient-specific iPSC-

derived neurons can provide a better understanding of 

the drug screening. A study conducted by Cooper et al. 

showed neurons from PD patients that carrying 

mutations in the PINK1 or LRRK2 genes exhibited 

oxidative stress and mitochondria impairment [64]. In 

addition, the AD model was also established from 

primary human fibroblast cells collected from familial 

Alzheimer’s disease (FAD) patient and was 

reprogrammed into iPSC. From this iPSC, two AD in vitro 

models were established with different clones using 

Presenilin 1 (PSEN1); (2) Presenilin 2(PSEN2) mutations. 

The genetic modified-iPSCs were then undergoing 

neural differentiation to model in vitro AD pathogenesis 

[3]. However, this model is time-consuming with a high 

risk of mutations [59]. 

 

3. PROSPECTIVE STEM CELL LINES AS AN IN VITRO ND 

MODEL 

Unlike SH-SY5Y cells and immortal rat hippocampal 

cells, stem cells are unique cells with the capacity to 

self-renew [65] and can be differentiated into a vast 

variety of cell types including neurons in vitro [66].  

Several studies have shown the beneficial effect of stem 

cells in degenerative diseases due to their capacity to 

differentiate into any types of cells and also their ability 

to secrete trophic factors that can reverse the damaged 

tissues [67]. Furthermore, stem cells become precious 

tools to establish in vitro model of ND and to study the 

therapeutic strategies owing to their capability to 

differentiate into any types of cells. To expand the 

choice of stem cell use as the prospect cells for 

establishing ND in vitro models, we are exploring and 

manipulating the properties of mouse embryonic stem 

cell (mESCs), 46C, and rat amniotic fluid stem cell 

(AFSCs), R3, lines. 46C is a mESCs transgenic line that 

carries a green fluorescent protein (GFP) knocked-in 

into the open reading frame of a transcription factor 

gene, Sox1, a marker for neural precursor cells (NPCs) 

[68]. Meanwhile, R3 is our in-house established AFSCs 

generated from rat full-term amniotic fluid. Both 46C 

and R3 have been shown to have the ability to 

differentiate into neurons [69-72]. 

 

Mouse ESCs can be acquired from (1) dissociated 

morulae [72]; (2) intact blastocysts [73]; and the inner 

cell mass (ICM). Generally, mESCs were isolated from 

E3.5 ICM of the mouse blastocyst [74] into tissue culture 

and propagating them in the presence of leukaemia 

inhibitory factor (LIF) [75] or murine embryonic 

fibroblast (MEF) feeder layer cells [76]. ESCs are 

characterised by their ability to proliferate indefinitely 

in vitro while maintaining their pluripotency properties 
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[73]. ESCs can differentiate into the derivatives of the 

three primary germ layers, which are: (1) mesoderm; (2) 

endoderm; and (3) ectoderm [77-79].  

  

Three fundamental transcription factors are involved in 

maintaining the pluripotency and self-renewal of ESCs, 

namely: (1) Oct4, belongs to POU family transcription; 

(2) Sox2, a member of SRY-related HMG box (Sox) 

family; and (3) Nanog, from the homeobox DNA binding 

family [80-83]. Oct4 gene is highly expressed in the ICM 

of the blastocyst, during early embryogenesis [84], as 

well as in pluripotent cells and it plays a crucial role in 

the cell fate determination [85]. Another transcription 

factor, Sox2 plays a crucial role in embryonic 

development and is also associated with pluripotency of 

ESCs [80]. Sox2 is also involved in the proliferation of 

precursor cells and differentiation of neuronal specific 

subtypes during the development of the central 

nervous system (CNS) [86]. Similar to Oct4 and Sox2, 

Nanog is also essential in the maintenance of 

pluripotency and self-renewal of ESCs [87,88]. In 

addition, Silva et al. and Mitsui et al. reported that 

Nanog is a key factor in the development of ICM and 

germ cells, suggesting its involvement in maintaining 

the pluripotency and self-renewal of the cells [87,89]. 

These three transcriptional genes work in the 

dependence manner in order to maintain self-renewal 

property while inhibiting the differentiation of the ESCs 

by co-operatively bind to their promoter and forming 

interrelated auto-regulatory loop [73,81,82]. 

 

On the other hand, amniotic fluid consists of numerous 

cell types derived from a growing foetus which 

ultimately differentiated into various cell types such as 

adipose, muscle, blood and neural lineage [90]. 

Currently, research on stem cells derived from amniotic 

fluid have been extensively studied. AFSCs can be 

obtained during the second and third trimester of 

pregnancy or directly after birth in human; and in the 

second or third week of pregnancy in mice and rats 

[71,90,91]. Two major populations of stem cells were 

found in amniotic fluids as reported by Cananzi and co-

workers, namely; (1) amniotic fluid mesenchymal stem 

cells and amniotic fluid stem cells (AFSC) [92]. We have 

successfully isolated and characterised AFSC in rats [71]. 

We categorised these cells as broadly multipotent stem 

cell based on the presence of the surface antigen, c-kit 

(CD117, a type III tyrosine kinase receptor of stem cell), 

which distinguishes it from mesenchymal stem cells 

[71]. The cells were observed to express Oct4 and 

Nanog. Our results were also supported by the study 

conducted by De Coppi and co-workers on the ability of 

rat AFSC to differentiate into the three primary germ 

layers: (1) mesoderm; (2) endoderm; and (3) ectoderm 

[71,90] 

 

Both 46C and R3 can be directly induced to differentiate 

into neural lineage through the (1) formation of 

multicellular aggregates, embryoid bodies, EBs, by 4-/4+ 

protocol [69], with the addition of all-trans retinoic acid 

(ATRA) as the neural inducer and also via (2) 

monoculture adherence protocol [93]. The abilities of 

mESCs and rat AFSCs to differentiate into functional 

neuronal and neuronal supporting cell subtypes have 

been reported previously [69,71]. These discoveries 

were in good agreement with our study with 46C and R3 

(Figure 1 and 2).  Both cell lines were able to generate 

good quality EBs (Figure 1) and differentiate into 

immature and mature neurons, as well as glial cells 

(Figure 2).  Their neurogenic potential was observed to 

be similar to SH-SY5Y cells and immortalised rat 

hippocampal cell lines based on the marker expression 

profile (Table 3).  All of these cell lines express markers 

for post-mitotic and mature neurons, as well as glial 

cells. 

 

The neurogenic properties of these cell lines have 

prompted us to test the suitability of their generated 

neurons as a tool to establish an in vitro ND model, as a 

prospective model for natural product research or at 

least for initial screening of neurotherapeutic potential 

of natural products. The in vitro model was established 

by treating R3-and 46C-derived neurons with hydrogen 

peroxide (H2O2).  
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Figure 1: Differentiation of 46C and R3 after neural induction using 4-/4+ protocol. (A) Undifferentiated R3; (B) Day 4 R3-

derived EBs; (C) Day 6 post-plating R3-derived neurons onto gelatin-coated plate; (D) Undifferentiated 46C; (E) Day 4 46C-

derived EBs; and (F) Day 8 post-plating 46C-derived neurons onto PDL/Laminin-coated plate. The scale bars represent 200 µm 

for micrographs. 

 

 

H2O2 was chosen for the fact that it has been used as the 

most common toxin to induce oxidative stress condition 

which is the general hallmark in ND conditions, 

particularly in PD and AD [43-45,50-54]. Based on 

cytotoxicity assay using MTT (Figure 3A), high 

concentrations of H2O2 (1500 µM for 46C and 2000 µM 

for R3) were chosen.  Our data showed a significant 

increase in ROS activity when the neurons were treated 

with H2O2 at these concentrations (Figure 3). Our 

results indicate a prospective success of establishing ND 

models in vitro by stimulating the production of reactive 

oxygen species (ROS). These findings clearly 

demonstrate the potential of these stem cell lines to 

provide good sources for an ideal in vitro model that 

could be mimicking ND phenomenon.  Unlike SH-SY5Y, 

which is a cancerous cell line, these stem cell lines may 

provide more reliable sources of neurons as they 

represent a normal condition before the pathogenicity 

of ND develops.  The effects of using more toxins such 

as those described in Table 2 should be carried out in 

the effort to characterise new in vitro models in future 

studies.  Nevertheless, more in-depth investigations 

looking at different perspectives of an in vitro ND model 

are required before one can use it as the model.  In a 

nutshell, these cell lines may be efficiently manipulated 

to establish models that would be applicable for initial 

screening of drugs or neurotherapeutic molecules of 

natural products, and fundamental studies before in-

vivo pre-clinical studies to take part.
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Figure 2:  Immunostaining of neural specific markers after neural differentiation of R3 and 46C from both monolayer adherent 
and 4-/4+ protocols. (A) and (E) are immunostaining of class III ß-tubulin (post-mitotic neurons); (B) and (F) are  
immunostaining of choline acetyltransferase, CHAT, (cholinergic neurons), (C) and (G) are expression of  tyrosine hydroxylase, 
TH, (dopaminergic neurons), and (D) and (H) immunostaining of  glial fibrillary acidic protein, GFAP, (astrocytes)  in R3 and 
46C-derived neurons, respectively. Nuclei were counterstained with DAPI, TOPRO3 or Hoechst 33342 (blue).  The neural 
specific markers highly indicate that adherent monoculture and 4-/4+ protocol have efficiently generated not only neuronal 
cells but also neuron supporting cells (glial cells) in R3 and 46C, respectively. R3-derived cells were from D12 (A) and D8 (B, C 
and D) neural cells plated onto gelatin-coated plates and 46C-derived cells were from D4 (E and F) neural cells post-plated 
onto PDL/Laminin-coated plates and D14 (G and H) post-plated onto gelatin-coated plates.   Class III ß-tubulin, TH and GFAP 
positive cells were obtained through monolayer adherent method; while  ChAT-positive cells were obtained via 4-/4+ method.  
The scale bars represent 100 and 200 µm for micrographs. 

 
 
 
Table 3:  Comparison of marker expression profiles of SH-SY5Y and rat immortalised hippocampal cells to 46C and R3 
 

Marker expression /  
Cell lines 

Post-mitotic neurons Mature neurons Glial Cells 

Human neuroblastoma 
(SH-SY5Y) 

NeuN and 
Class III β-tubulin [20] 

Tyrosine hydroxylase (TH) [56] 
Synaptic vesicle protein 2 (SV2) [60] 

- 

Rat immortalised 
hippocampal cells 

- Neurofilament protein (NFP) [60] Glial fibrillary acid 
protein (GFAP) [60] 

Embryonic stem cell (46C) Class III ß-tubulin 
 

Choline acetyltransferase (ChAT) 
Tyrosine hydroxylase (TH) 

Glial fibrillary acidic 
protein (GFAP) 

Rat amniotic fluid cell (R3) Class III ß-tubulin 
 

Choline acetyltransferase (ChAT) 
Tyrosine hydroxylase (TH) 

Glial fibrillary acidic 
protein (GFAP) 
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Figure 3: (A) The effect of different concentrations of H2O2 on R3- and 46C-derived neurons expressed as the percentage of 
cell viability by MTT assay. Errors bars (I) indicate ± standard error of mean from 3 independent experiments, each with 3 
technical replicates (n=3) where *** indicates p<0.001 and ** indicates p<0.01 (One way ANOVA: Tukey’s test multiple 
comparisons) compared to untreated neurons. (B) Morphology of untreated (0 µM H2O2) with neurite projections (indicated 
by yellow arrows); 2000 and 1500 µM H2O2 -treated day 8 post-plated R3-derived neurons and day 4 post-plated 46C-derived 
neurons, respectively, after 24 h treatment. The neurons were damaged upon treatment with H2O2. Neurite projections 
damaged in neuronal culture treated with H2O2 (indicated by red arrows).  The scale bars represent 200 µm for micrographs. 
ROS activity was assessed by H2DCF-DA assay, as depicted in the histogram (C, next page) and percentage of ROS generation 
versus neurons graph (D, next page). (C, next page) Intracellular ROS generation within the cells labelled with 2’, 7’-
dichlorodihydrofluorescein diacetate (H2DCF- DA) was measured by flow cytometry. Intracellular ROS oxidized H2DCF-DA into 
fluorescent 2’, 7’- dichlorodihydrofluorescein diacetate (DCF). Continued on next page. 
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Continue from previous page. 
Figure 3: In our study, the neurons were pre-incubated with H2O2 at the concentrations of 0 µM which served as control, 1500 
and 2000 µM (46C- and R3-derived neurons, respectively) for 24 h at 37°C, then incubated with DCFH-DA for 45 min at 37°C. 
The X-axis of H2DCF-DA histogram represents the H2DCF-DA intensity, while the Y-axis represents the cell counts in 
corresponding DCF fluorescence intensity. The percentage of ROS release within the cell population was shown by the shift 
of histogram peak to M1 zones, defined as positive cells. Our results show that the peaks of H2O2 -treated neurons at a 
concentration of 1500 µm and 2000 µM, were gradually shifted to the right of M1 zones compared to the untreated neurons 
(0 µM H2O2), reflecting an increased level of intracellular ROS within the cell population (D). 2000 and 1500 µM of H2O2 
induced a significant increase in ROS level of R3- and 46C -derived neurons, respectively, as compared to untreated neurons 
(control). The values represent the percentage of generated ROS.  The error bars indicate mean ± Standard deviation (SD) 
from 1 independent experiment with 3 technical replicates (n=3) for R3-derived neurons and 46C-derived neurons, where ** 
indicates p<0.01 and * indicates p<0.05 (Student’s t-test). 
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4. CONCLUSIONS AND FUTURE PROSPECTS 

Neurons derived from animal stem cell lines may serve 

as high prospective cells to be utilised in the 

establishment of an in vitro ND model. They may provide 

better models for initial screening of neuro-

pharmacology properties of drugs or natural products 

from a more reliable source that represents a normal 

condition compared to using cancerous cell line such as 

the neuroblastoma cell line. Although these two animal 

stem cell lines retained the capacity for neuronal and 

glial differentiation and can be grown for an extended 

period, data on human stem cells would be more 

appropriate as it is more reflective of human scenario 

and would be more suitable for medical applications. 

Thus, further studies using human stem cells should be 

looked into in the future. 
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