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ABSTRACT: Alzheimer's disease refers to a pathological topography accompanied by the loss of 
neurons in the brain regions including entorhinal cortex and hippocampus, resulting in memory 
impairment, cognitive dysfunction, behavioural problems, and difficulties in activities of daily living 
that ultimately lead to mortality. This disease typically affects the elderly population. Even if the 
underlying pathophysiological mechanisms are unclear, Alzheimer's disease is unquestionably 
associated with dysfunction in the cholinergic system, resulting in a decreased level of acetylcholine 
in specific brain regions, including the entorhinal cortex and hippocampus. Although significant 
progress has been made in understanding the molecular and cellular causes of Alzheimer's disease, 
there is presently no medication available to reduce or stop the loss of brain cells. As the number of 
individuals with Alzheimer's disease continues to rise, there is a pressing need to develop ways for 
early diagnosis and offer viable treatments to avert a public health crisis. In recent years, 
nanoparticles have been seriously studied as a diagnostic and therapeutic tool for Alzheimer's 
disease. Here, we discuss the recent growth in nanoparticles for Alzheimer's disease diagnosis and 
treatment. 
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1.0  INTRODUCTION 
Alzheimer's Disease (AD), a persistent 
neurodegenerative condition characterised by 
progressive deterioration in cognitive function, 
including memory loss and abnormalities in function and 
behaviour, is the most prevalent form of dementia 
among the elderly (Aisen & Davis, 1997; Masters et al., 
2006). AD was first described by the Bavarian 

neuropsychiatrist Alois Alzheimer in 1906 (Hostettmann 
et al., 2006). The global impact of AD affecting nearly 50 
million people worldwide, are projected to reach 150 
million by 2050. AD poses significant clinical, social, and 
economic challenges (Dumurgier et al, 2020; Feigin et 
al., 2019).  Although there are only four FDA-approved 
treatments for AD, their limitations contribute to 
therapy failure, stressing the need for alternative 
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therapeutic interventions and the importance of finding 
new biomarkers in order to better understand the 
pathophysiological mechanisms to develop effective 
treatment strategies (Cao et al., 2022). 
 
Current drug therapies for AD consist primarily of FDA-
approved cholinesterase inhibitors (Donepezil, 
Galantamine, Rivastigmine, and Huperzine A), an N-
methyl-D-aspartate receptor antagonist (Memantine), 
and some neuroprotective agents. Although these 
medications relieved several psychological and 
behavioural symptoms of AD patients, effective 
pharmacological approaches for the prevention and 
treatment of AD, i.e., disease-modifying therapies, are 
missing (Hong-Qi et al., 2012). 
 
The pathology of AD is progressive. Presently, there is no 
single diagnostic method for precision screening or early 
and reliable identification of AD, and clinical criteria 
(including laboratory tests, neuroimaging, and 
neuropsychological testing) can only provide a likely 
diagnosis with an average confidence level of 80% 
(Fradinger & Bitan, 2005). In addition, the widely given 
drugs are symptomatic and do not halt the progression 
of the disease's pathology. Even the most advanced 
treatments currently on the market or under study can 
only delay or stop the advancement of the disease's 
pathophysiology; they cannot restore lost brain 
function. Therefore, AD is incurable (Masters et al., 
2006; Mattson, 2004). 
 
In addition, the limited potential for repair and 
regeneration of brain tissue renders this progression 
nearly irreversible (Masters et al., 2006). This 
necessitates an early detection and prevention of the 
condition. The sooner we stop the pathogenetic 
process, the less symptomatic the patient will be. 
Therefore, the current treatment approach is to conduct 
particular diagnostic techniques to screen the group at 
high risk for AD (Mortimer et al., 2005). 
 
The complex structure and functional features of the 
central nervous system (CNS) are primarily responsible 
for the prominence of nanotechnology's medical 
applications in CNS-related illnesses (Silva, 2005). 
Nanotechnology is revolutionizing neurology, offering 
various therapeutic options for neurological disorders 
like Alzheimer's and Parkinson's diseases. Stem cell 
research uses nanoparticles to stimulate regeneration 
without immune response. Nanomedicine, specifically 
theranostics, integrates diagnostic and therapeutic 
nanotechnology for neurodegenerative disorder 
treatments. Advancements include drug targeting, 

magnetism, and nanoformulated particles. 
Nanoprotection against nerve injury is being addressed 
using antioxidants like fullerene. Nano-level 
neuroprotection involves carbon nanotube electrode 
arrays for neurorepair through nanoscaffolds, enabling 
surgeries at micro- or nanolevels for axon renovation 
and monitoring neural activity (Badry and Mattar, 2017; 
Milane et al., 2021). 
 
2.0  NANOPARTICLES IN TREATMENT OF AD 
2.1  Nanoemulsion 
Twenty years ago, nanoemulsions with 20–200 nm 
discrete droplet sizes were produced (Anton et al., 2008; 
Gutierrez et al., 2008; Mason et al., 2006; Solans et al., 
2005) In fields such as pharmaceutics, cosmetic science, 
food technology, etc., they can be used as innovative 
formulations (Acosta, 2009; Sonneville-Auburt et al., 
2004; Sosnik et al., 2010). Because they are non-toxic 
and non-irritant, they are great therapeutic agents 
because they do not harm human or animal cells. Their 
physical durability provides an extra edge (Aboofazeli, 
2010). 
 
The intranasal administration of an acetylcholinesterase 
inhibitor in conjunction with a neuroprotective and anti-
amyloid medication is a potential method for the 
treatment of AD. Sood et al. (2013) effectively created 
donepezil-loaded mucoadhesive nanoemulsions for 
intranasal delivery to direct brain distribution. These 
nanoemulsions can be utilised to deliver donepezil for 
treating AD. The nanoemulsion of curcumin and 
donepezil for intranasal delivery to the brain has been 
produced. The combination therapy was built on the 
cholinergic replacement idea in conjunction with the 
anti-amyloid and anti-inflammatory approach for 
improved AD management via intranasal administration 
for improved brain targeting (Sood et al., 2013). 
 
2.2  Nanosuspensions 
The nanosuspensions are defined as drug carriers by 
particle size range between 10 and 1000 nm (Muller et 
al., 1999). Nanosuspensions diminish drug 
administration doses, adverse effects, and therapeutic 
costs (Zhang et al., 2007). The formulation of a 
nanosuspension containing donepezil via ionic cross-
linking demonstrated a greater drug concentration in 
the brain, with no mortality, haematological changes, 
body weight fluctuations, or histological alterations in 
mice. The formulation was provided in varied doses 
compared to normal saline administered intranasally, 
and it was determined that donepezil-loaded 
nanosuspension could provide direct nose-to-brain 
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delivery, hence increasing drug concentration in the 
brain (Bhavna et al., 2013). 
 
2.3  Biodegradable polymeric nanoparticles 
The biodegradable polymeric nanoparticles are matrix-
type, solid colloidal particles in which pharmaceuticals 
are dissolved, entrapped, encapsulated, or chemically 
bonded to the polymer matrix (Allen & Cullis, 2004; 
Huwyler et al., 1996; Kwon, 1998). Compared to other 
colloidal carriers, polymeric nanoparticles are more 
stable in biological fluids and resistant to enzymatic 
degradation (Lockman et al., 2003). It has been explored 
that biodegradable polymeric nanoparticles can 
transport medications through the blood-brain barrier 
for the treatment and diagnostics of neurological 
illnesses such as Alzheimer's disease (Roney et al., 2005). 
Using the single emulsion-solvent evaporation 
approach, it has been reported that nanoparticles 
containing Rivastigmine tartrate were successfully 
created. As an alternative to enhancing the drug's 
stability, this formulation strategy may improve 
absorption, bioavailability, and therapeutic 
effectiveness (Pagar & Vavia, 2013). 
 
To target the brain with rivastigmine-loaded poly 
(ethylene glycol)–poly (lactic-co-glycolic acid) (PEG–
PLGA) nanoparticles, a novel formulation was 
developed. Therefore, the proposed formulation was 
designed to be a capable carrier, especially for the 
blood-brain barrier, which is a challenging factor for 
brain drug delivery, and the delayed drug release of 
rivastigmine may be advantageous for treating AD. The 
developed formulation decreased the total dose of the 
medicine required for therapy to a minimum level 
(Prakash et al., 2014). 
 
Chitosan is a biocompatible, bioactive, and 
biodegradable polymer commonly employed in 
preparing micro- and nanoparticles. Chitosan has been 
used as a delivery system for genes, proteins (including 
antibodies), and medicines due to its cationic charges, 
biocompatibility, and low toxicity (Singh & Lillard, 2009; 
Wilson et al., 2010). Ionic gelation was used to create 
chitosan nanoparticles that were loaded with 
rivastigmine and successfully treated streptozotocin-
induced dementia in mice (Bajaj & Chopra, 2013). 
 
2.4  Dendrimers' effect on the amyloid-beta (Aβ)-
peptide 
Dendrimers are nanomaterials with spherical 
macromolecular structures and a densely packed 
surface (Klajnert et al., 2006). Their architecture has 
afforded them numerous biomedical opportunities 

(Mansoori et al., 2007;  Nikakhtar & Nasehzadeh, 2005). 
Preventing Aβ's cytotoxic effects is another 
nanotechnology possibility for the anti-amyloid 
strategy. Recent recommendations for this strategy 
involve modified dendrimers (Nazem & Mansoori, 
2008). Patel et al. (2006) revealed that dendrimers can 
shield the cell membrane against membrane-mediated 
neurotoxicity resulting from electrostatic contact with 
the cell membrane. In addition, dendrimers are capable 
of sequestering poisonous A species, thereby preventing 
their detrimental effects on the cell membrane. Due to 
the possible toxicity of dendrimers on cells, further 
research is required before this approach may be used 
in vivo (Patel et al., 2006). 
 
Patel et al. (2007) demonstrated that attachment of 
sialic acid to dendrimer termini via the anomeric 
hydroxyl group, as opposed to the carboxylic acid group, 
slightly improves their ability to ameliorate A-induced 
neurotoxicity. These results contribute to our 
understanding of the A/sialic acid interaction and 
support further research into developing sialic acid-
modified materials to prevent A toxicity (Patel et al., 
2007). 
 
2.5  Anti-Aβ-fibrillation magnetic nanoparticles 
Magnetic nanoparticles (MNPs) are candidates for 
various biomedical applications. They have a magnetic 
core, such as maghemite, and a biocompatible coating, 
such as polyethylene glycol (PEG). Functionalising MNPs, 
i.e. combining them with biological vectors, luminous 
labels, antibodies, medicines, etc., makes them more 
appealing and valuable (Cai & Chen, 2007). Ideal MNPs 
are non-toxic to cells and tissues and have a lengthy 
shelf life (Amiri et al., 2013). According to the amyloid 
cascade hypothesis, research on the use of MNPs in AD 
has concentrated on suppressing A-peptide aggregation 
and amyloid-beta-derived diffusible ligand (ADDL) 
production or on finding sensitive ways to assess 
biomarkers (Busquets et al., 2014). The physicochemical 
impacts of superparamagnetic iron oxide nanoparticles 
(SPIONs) on the Aβ fibrillation process were explored by 
Mahmoudi et al. (2013). They discovered that SPION size 
significantly affects the Aβ fibrillation process's 
inhibition (Mahmoudi et al., 2013). 
 
2.6  Lipoprotein-based nanoparticles to accelerate 
amyloid beta clearance 
Lipoproteins, natural nanoparticles with a well-
established biological function, are ideally suited as a 
nanoplatform for medical diagnostics and therapies. 
Due to its ultra-small size and constructive surface 
features, high-density lipoprotein (HDL), the smallest 
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lipoprotein, is very interesting. Viola and colleagues 
(2015) designed an amyloid-targeted lipid compound 
and put it into stealth liposomal nanoparticles that 
target amyloid plaque deposits in a preclinical model of 
AD. Their chemical traverses the blood-brain barrier and 
binds to Aβ plaque deposits by labelling parenchymal 
amyloid deposits and vascular amyloid characteristics of 
cerebral amyloid angiopathy (Viola et al., 2015).  
 
ApoE3 is an anti-atherogenic protein that plays a 
significant role in plasma cholesterol homeostasis. HDL, 
an endogenous nanoparticle serving as a "good" lipid 
transporter and a natural vehicle with accurate 
navigation for biomolecule delivery  in vivo  (e.g., 
proteins, micro-RNAs, vitamins, and hormones), plays a 
crucial part in lipid metabolism and cell-to-cell 
communication. According to Song et al. (2014), 
lipoprotein-based nanoparticles (ApoE3 rHDL) enhanced 
amyloid clearance in AD mice. The findings were direct 
evidence of a bio-mimetic nanostructure crossing the 
blood-brain barrier, capturing amyloid, and facilitating 
its degradation by glial cells, indicating that ApoE3 rHDL 
may provide a new nanomedicine for disease 
modification in AD by accelerating amyloid clearance, 
which also supported the notion that nanostructures 
with amyloid-binding affinity may offer a novel 
nanoplatform for AD therapy (Song et al., 2014). 
 
Curcumin is a recognised amyloid ligand that inhibits the 
development of A142 oligomers and binds to plaques in 
vivo. Diverse types of curcumin-phospholipid conjugates 
have been designed for liposomal and solid-lipid 
nanoparticle incorporation. It is anticipated that 
peripheral treatment with these multivalent 
nanoparticles will reduce the level of amyloid in the 
brain by altering amyloid equilibrium, thereby reducing 
brain amyloidosis (Moghimi, 2011). 
 
3.0  NANOPARTICLES IN ALZHEIMER'S DISEASE 
DIAGNOSIS 
It is crucial to diagnose AD early to prevent permanent 
neuronal damage and dementia. As studying a real 
human brain is difficult and time-consuming, developing 
methods for detecting AD in its early phases is vital. 
 
3.1  Magnetic nanoparticles as contrast agents for MRI 
(Magnetic Resonance Imaging) 
Since it is widely accepted in the scientific community 
that the formation of senile plaques leads to 
neurofibrillary degeneration, the majority of efforts are 
focused on the detection and identification of amyloid 
plaques by magnetic resonance imaging (MRI) with 

nanoparticles doped with contrast agents (Brambilla et 
al., 2012). 
 
Co-deposition and surface modification techniques 
were used to develop a contrast agent with magnetic 
nanoparticles and Aβ peptide. To explore in vivo 
imaging, the brains of AD transgenic mice were imaged 
using an MRI apparatus. The results demonstrated that 
the contrast agent is approximately 5 nm in size and has 
excellent MRI enhancement of senile plaque (Sillerud et 
al., 2013). 

 

A sensitive contrast probe for molecular MRI has been 
reported to be unique to amyloid oligomers (AOs). 
Antibodies specific for AOs bound to magnetic 
nanostructures demonstrated the complex's stability; 
they bind to AOs on cells and brain tissues to produce an 
MRI signal. When delivered intranasally to an AD mouse 
model, the probe rapidly reached hippocampus AOs. In 
isolated human brain tissue samples, an MRI signal 
distinguishing AD from controls was detected. Such 
nanostructures that target neurotoxic AOs may be 
beneficial for evaluating the efficacy of novel medicines 
and, eventually, for diagnosing and treating AD in its 
earliest stages (Viola et al., 2015). Moreover, it has been 
reported that the creation of monocrystalline iron oxide 
nanoparticles (MIONs) covalently bonds to the N-
terminus of the A1-40 peptide via amide coupling and 
that their progress has been made for the coupled 
targeting and imaging of senile plaques (Wadghiri et al., 
2003). 
 
3.2  Nanogels 
Nanogels, an effective pharmaceutical delivery system 
that offers enhanced cellular absorption, reduced 
toxicity, higher drug loading, and controlled release at 
the target site, have been applied in drug delivery 
systems for AD. A recent study demonstrated the 
efficacy of chitosan and tripolyphosphate nanogels for 
the delivery of deferoxamine in AD treatment. Modified 
pullulan backbones with cholesterol moieties serve as 
artificial chaperones that mitigate AD pathology by 
preventing Aβ amyloid development. In preclinical 
mouse experiments, nanogels enhanced the delivery of 
insulin to the brain, a potential AD drug, especially when 
combined with polysaccharides, showcasing non-toxic, 
stable, hydrophilic, and biodegradable properties 
(Ashrafi et al., 2020; Kamei et al., 2018). 
 
Researchers are exploring nanomaterials for precision 
medicine to address the limitations of current AD 
treatments that cannot cross the blood-brain barrier. 
They highlight various nanocarrier categories, including 
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metallic/non-metallic nanoparticles, organic 
nanoparticles, lipid vesicular, and emulsion-based 
carriers. Metallic nanoparticles, such as gold, silver, 
selenium, iron, and cerium, show therapeutic potential 
for AD through targeted drug delivery. Other 
nanocarriers, such as nanostructured lipid carriers and 
polymeric nanoparticles, also show potential in 

developing effective treatment strategies (Ayaz et al., 
2020; Liu et al., 2020; Mir Najib Ullah et al., 2023). 
 
4.0  ADVANTAGES AND DISADVANTAGES OF 
NANOTECHNOLOGY IN ALZHEIMER'S DISEASE 
The diagnostic and treatment-related advantages and 
disadvantages of AD are listed in Table 1.

 
 
Table 1: Advantages and Disadvantages of Nanotechnology in Treatment and Diagnostic of Alzheimer's Disease 
 

ADVANTAGES DISADVANTAGES 

Capable of overcoming the constraints inherent to 
blood-brain barrier transit (Silva, 2010; Kreuter, 2001). 

Possibility to produce nanoparticle-mediated toxicity 
and adverse responses (Moghimi et al., 2005; 
Dobrovolskaia et al., 2007). 

Atomic force microscopy with sub-nanometer 
resolution makes it easier to discriminate between 
amyloid beta protofibrils and fibrils in terms of height 
variation than electron microscopy studies (Mansoori, 
2005; Harper et al., 1999). 

Imaging with nanoparticles of iron oxide as an MRI 
contrast agent may not be useful for diagnosing 
Alzheimer's disease in its earliest stages. Because the 
production of amyloid plaques occurs in the later, 
more advanced stages of the illness (Nazem & 
Mansoori, 2011). 

Fluorescence resonance energy transfer microscopy is 
a nanoscale method that applies to both in vitro and 
in vivo research on AD (Selvin, 2000). 
 

Several components of polymeric nanoparticles and 
nanoconstructs may block the operation of P-
glycoprotein efflux pumps on the luminal side of 
brain capillary endothelial cells and generate 
cytotoxicity (Batrakova et al., 2003; Hunter & 
Moghimi, 2003). 

NanoSIMS (Nano Secondary Ion Mass Spectroscopy) 
microscopy demonstrated advantages for portraying 
chemical and morphological changes in diseased brain 
regions (Quintana et al., 2007). 

Nanoparticles may alter or inhibit the transit of 
hemostatic mediators in the CNS (King et al., 2001). 
 

NanoSIMS depicts senile plaques with higher 
resolution than optical imaging (Quintana et al., 
2007). 

Polymeric nanoparticles can alter gene expression, 
which could pose significant challenges to the 
transport of nucleic acid to the capillary endothelial 
cells of the brain (Akhtar & Benter, 2007; Kabanov et 
al., 2003). 

Gold nanoparticles based Bio-barcode assay a viable 
method for diagnosing Alzheimer's disease and other 
forms of dementia (Keating, 2005). 

 

Magnetic nanoparticles exhibit a high degree of 
similarity to circulating amyloid beta forms, resulting 
in a "sink effect" and, ideally, a revolution in AD 
treatment (Brambilla et al., 2012). 

 

Nanodrop can be used to determine RNA 
concentration in AD brains (Gok et al., 2022). 

 

 
5.0  CONCLUSIONS 
Nanotechnology presents promising prospects for the 
future of medical treatment and diagnosis. Researchers 

can conduct experiment with novel concepts to advance 
the treatment and diagnostics of Alzheimer's disease 
and dementia due to the unique capabilities of 
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nanotechnology. However, numerous unanswered 
problems remain regarding the biocompatibility of 
nanoparticles and nanodevices, particularly in 
complicated biological environments such as the brain's 
high cell density. The visualised nano-neurosurgical 
techniques for healing CNS illnesses appear to have a 
long and complex road ahead before becoming a 

practical technology and, eventually, a standard clinical 
practice. 
Author contributions: D.P.S., S.G. and S.M. prepared, 
reviewed, edited and drafted the paper. J.V. reviewed and 
approved the paper.  
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