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Abstract: We present a preliminary data-based assessment of measurement reliability of the 

commercial 14-electrode Emotiv EPOCTM EEG wireless system in distinguishing between 

electrophysiological states of emotional function, as compared to a standard research-lab 

stationary 32-electrode EEG system for personalized single-individual use.  Individual observers 

completed two tasks designed to elicit neural changes in emotional arousal and valence while 

simultaneously recording their EEGs with both systems in separate sessions. Participants observed 

emotion-laden words from the ANEW database and images from the IAPS database, both widely 

used and validated databases for emotional processes in multidisciplinary research. The pattern of 

results distinguished between high and low arousal and valence states using the stationary 

traditional system, but not the commercial device. Also, the latter device recorded EEG band 

frequencies at a much lower resolution and frequency range than the standard system. These 

findings suggest poor validity when using the commercial device and therefore should be 

cautioned against in a research setting.   
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1. INTRODUCTION 

The identification and classification of human emotions 

using electroencephalography (EEG) is a major 

research focus for developing Brain-Computer 

Interface (BCI) devices.  Translating 

electrophysiological signals from a person’s scalp into 

quantifiable data (event-related potentials, or ERPs) is 

useful for programming computer systems to 

recognize emotional content in facial expressions and 

vocal inflections [1] and allows software-based 

intelligence systems to adapt their function to a user’s 

overall emotional state in real-time [2]. The need for 

cost-effective EEG systems that can reliably distinguish 

between emotional states is growing in importance; 

EEG systems with a greater number of electrodes 

enable researchers to provide higher resolution 

recordings of electrophysiological activity but also 

require a lengthy preparation time to arrange the 

electrodes and test the signal amplification. Public and 

private businesses seeking to employ BCI devices to 

enhance their operatives’ functionality are often 

interested in EEG systems with fewer electrodes-

minimizing preparation time while potentially 

sacrificing the quality and resolution of the 

electrophysiological signal recordings. Recent reports 

have demonstrated that there is indeed some research 

utility for consumer-grade devices such as the Epoc as 

compared to other similar devices such as the 

Neurosky MindWave [3]. However both of these 

devices’ performance is questionable compared to 

proper research-grade EEG [4].  

 

The push to incorporate classification algorithms 

within these devices is prominently associated with the 

alluring promise of personalization, single-

individualized use according to which the BCI system 

might be calibrated and fine-tuned to the individual 

characteristics of the person's brain/mind (which 

assumes an “N = 1” approach). Our current 

investigation provides novel evidence against relying 

on consumer devices for research grade tasks, 

specifically in this case for measuring 

neuropsychological aspects of emotional states 

(stimulus valence and arousal). Most current research 

with consumer-grade devices is limited since it uses 

only the consumer device itself; failing to demonstrate 

validity and reproducibility of results by comparison 

with a juxtaposed research grade device.  We 

overcome this limitation by directly comparing the 

data acquired from a consumer grade EEG to that of a 

research grade EEG under the same conditions using a 

within-subject design.  

 

We acquired two adjacent EEG systems for their 

potential application as a part of a brain-computer 

interface: the Brain Vision Easy Cap EC40 headset and 

the actiCHamp active channel amplifier system 

(henceforth Brain Vision of BV) as well as the Emotiv 

EPOCTM EEG wireless system (henceforth abbreviated 

simply as Epoc). The Brain Vision Easy Cap is a standard 

research grade 32-electrode headset, whereas the 

Epoc headset is a consumer grade device with only 14 

electrodes, but boasts a much more elegant user-

friendly design. In addition, it transmits 

electrophysiological data wirelessly via a BluetoothTM 

transmitter, bypassing the signal processing 

traditionally performed by an external amplifier.  While 

preparation time is minimal (10-15 min on average, as 

compared to 45-60 minutes for BV), the Epoc headset 

does not have any electrodes placed along the midline 

of the head, and it uses two reference electrodes on 

both sides of the head corresponding with the parietal 

lobe (P3 and P4) as opposed to using a single ground 

electrode along the midline as reference in traditional 

EEG systems.  Furthermore, the electrodes are placed 

on the scalp without any gel substance serving as an 

intermediate for electrical conduction, thereby further 

limiting the ability to perform EEG source analysis 

(approximating the anatomical source of temporal 

electrical activity). For this reason, a viable test of 

comparative measurement reliability with other 

systems can be done through measurement of global 

or whole electrical brain activity. This is the approach 

we took in this preliminary study. 

  

In this study, we evaluated the Brain Vision Easy Cap 

EC40 and the Epoc EEG systems on their efficacy and 

reliability in differentiating between varying levels of 
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two distinct dimensions of emotion, emotional arousal 

and valence [4]. We presented human subjects with 

two experimental tasks designed to examine if the 

Brain Vision system could be used to distinguish 

between states of high and low arousal and high and 

low valence, based on patterns of event-related 

frequency band potentials (ERBPs) in response to the 

presentation of emotionally-salient words or visual 

stimuli. Importantly, we report novel findings regarding 

the comparable signal quality of each device and the 

inability of Epoc to reproduce the results seen using 

the BV device.  

 

2. MATERIALS AND METHODS 

2.1 Participants 

Participants were three healthy graduate and 

undergraduate students (mean age 24.66 years old) 

serving as trained research assistants.  This study 

followed all ethical guidelines on human participant set 

out by the host institution. All participants were right-

handed males with corrected-to-normal (N=2) or 

normal (N=1) vision, and none reported any history of 

neurological impairment or were currently using 

psychoactive medications. The average number of 

hours of sleep on the previous night was 7.5 hours. 

Testing was conducted from 10 a.m. to 4 p.m. with a 

one-hour break in between on two separate days. The 

pre-experimental short adult version of the mood and 

feelings questionnaire [5] were administered by an 

independent research assistant unaware of the 

hypotheses and goals of the study to screen mood 

differences or emotional changes before the 

experimental sessions between days. No remarkable 

differences were reported as all participants scored 

similarly (overall score range: 3-5) in the two days and 

consistently well below the recommended clinical cut-

off (possible maximum = 26; clinical cut-off = 11). 

 

2.2 Experimental design 

The participants completed two tasks sitting in front of 

a computer monitor while undergoing ERP analysis 

using the 32-electrode Brain Vision EEG system, and 

repeating both tasks two days later while using the 14-

electrode Epoc EEG system. In the first task, subjects 

observed a series of selected images from the 

International Affective Picture System (IAPS). IAPS is a 

large standardized database of images, where each 

image carries a rating based on its three dimensions of 

emotion: valence, arousal, and control/dominance [6]. 

Emotion-laden pictures that had previously been 

categorized by the target parameters of valence and 

arousal were used to designate the image as high or 

low arousal/valence, previously shown to correlate 

with known EEG signatures [7,8]. Similar to this 

research, a recent fMRI study has shown that the 

emotions evoked by these images effectively separate 

the emotions into distinct arousal/valence quadrants 

[9]. The calibration for these emotion-laden 

localizations occurred across participants. We pre-

selected 100 high arousal and 100 low arousal images 

(high and low arousal determined by their rating in the 

database) as well as 100 high valence and 100 low 

valence images for use in our study. We presented 

each participant with a randomized selection of 100 

images (25 high arousal, 25 low arousal, 25 high 

valence, 25 low valence) on a computer monitor while 

recording their electrophysiological activity via the 

Brain Vision headset.  The stimulus presentation 

program began with a central cross fixation to help 

participants focus their gaze and reduce eye 

movements. After 200 ms, the first image was 

presented for 4500 ms, followed by a 1300 ms 

presentation of the cross fix preceding the second 

image. Participants were specifically instructed to try 

to form an emotional connection with each 

image/word presented and to remain as still as 

possible while viewing images/words. Images filled a 

48.3 cm (19”) monitor with a 1024 x 768-pixel 

resolution.  Letters were presented at a font size of 48 

points and presented in the center of the monitor. 

  

In the second task, subjects observed a series of 

selected words from the Affective Norms for English 

Words (ANEW) database.  ANEW is another 

standardized inventory of normative emotional ratings 

for a large number of words in the English language; it 

was developed to complement IAPS [10].  Previous 

research using the ANEW has plotted the normative 
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ratings in 2-dimensional space and found the 

distribution effectively complements the IAPS using 

EEG [9].  We presented each participant with a 

selection of words from the ANEW database on a 

computer monitor while recording their 

electrophysiological activity (the same procedure as 

with the IAPS images, this time with words); one series 

of words with the Brain Vision headset, and another 

series with the Epoc headset. 

 

2.3 Event-related band potentials and signal 

amplification 

EEGs were recorded for each participant during the 

tasks. The Brain Vision EEG recordings were obtained 

from electrodes held in place by means of an elastic 

cap (Easy Cap, Brain Vision, Morrisville, NC, USA) 

adhering to the ten-twenty system of measurements 

[11] with 32 active low-noise pin-type Ag-AgCl 

electrodes (1 mm each) amplified (sampled up to 1000 

Hz) and recorded reference-free.  Standard external 

landmarks (i.e. the inion, the nasion, and left and right 

pre-auricular points) were the basis for the montage 

distribution with electrodes positioned as percentage 

distances from these landmark points (see Figure S1 in 

Online Supplementary Materials).  All impedances 

were kept under 25 kOhms so that they provided an 

effective electrical signal with minimal noise. The Epoc 

recordings were collected as is with no additional 

materials or measurements other than the device 

itself.  

  

EEG signals were amplified, and low pass filtered at 

100 kHz via the actiCHamp active channel amplifier 

with a sampling rate of 1000 Hz.  All electrodes were 

offline re-referenced to a common average reference 

(i.e. the average was subtracted from each electrode 

for each time point). Offline averaging was performed 

such that event-related frequency band potentials 

(ERBP) were averaged separately for each stimulus 

type and condition for each electrode with an Epoch of 

-200 ms pre-stimulus to 1000 ms post-stimulus. ERBPs 

included the individual trials to code high and low 

arousal, high and low valence. For details and analysis 

outputs, please see Online Supplementary Material.  

2.4 Statistical analysis 

For our statistical analysis, it was necessary to evaluate 

whole brain ERBP because the precision of the 

electrode placement in the Epoc could not be 

confirmed. Hence, there is no validity without this and 

comparing electrodes of one system with the other is 

fruitless. Additionally, we used a Vincentization 

technique for the EEG data which involves the 

averaging of three or more subjects’ quantile functions 

in order to obtain group quantiles [12-14]. This 

statistical technique allowed us to construct F values to 

evaluate differences between the five frequency bands 

adopting a by-item approach, where the electrodes are 

the unit of analysis (cases). 

 

2.5 Ethics statement 

Upon review of the submission materials, following 

Article 2.1 the Tri-Council Policy Statement Carleton 

University Research Ethics Board determined that this 

study did not require prior review or approval by the 

Board. Documentation and signed consent were 

waived. Documentation of consent was obtained by 

recording computerized log-ins during voluntary 

participation.  

  

3. RESULTS 

3.1 Distinguishing electrophysiological states of 

arousal and valence with the IAPS Task 

The two panels below (Figure 1) summarize the 

frequency band analysis for examining arousal and 

valence using the IAPS task.  Figure 1A displays the 

distinguishing of high and low arousal states using the 

Brain Vision system and Epoc system. A two-way 

analysis of variance revealed that the observed 

differences in the arousal condition (high arousal vs. 

low arousal) was not statistically significant for either 

system; differences in frequency band (Delta, Theta, 

Alpha, Beta, Gamma) were significant for the Brain 

Vision system only (F (1,31) = 63.224, p < 0.01); and the 

interaction between arousal condition and frequency 

was also significant for Brain Vision only (F (1,31) = 

12.303, p < 0.01). Figure 1B displays the comparison 

between high and low valence states using the Brain 

Vision system and the distinguishing of high and low 

https://doi.org/10.31117/neuroscirn.v2i1.21
https://doi.org/10.31117/neuroscirn.v2n1.21
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valence states using the Epoc system.  A two-way 

analysis of variance revealed that the observed 

differences in the valence condition (high valence vs. 

low valence) was statistically significant for the Brain 

Vision system only (F (1,31)  =19.157, p < 0.01,); 

differences in frequency band (Delta, Theta, Alpha, 

Beta, Gamma) were significant for Brain Vision only (F 

(1,31) = 72.550, p < 0.01); and the interaction between 

valence condition and frequency was also significant 

for Brain Vision (F (1,31)  = 51.138, p < 0.01). 

 

 

 

 

Figure 1. Distinguishing high and low arousal (Panel A) and valence (Panel B) between Epoc versus Brain Vision using event-

related frequency band potentials (ERBP) with the IAPS task. Y-axis values are in squared microvolts (EEG Power). From left 

to right, EEG bands in x-axis correspond to standard nomenclature: delta, theta, alpha, beta and gamma. 

 

 

 

 

Figure 2. Distinguishing high and low arousal (Panel A) and valence (Panel B) between Epoc versus Brain Vision using event-

related frequency band potentials (ERBP) with the ANEW task. Y-axis values are in squared microvolts (EEG Power). From left 

to right, EEG bands in x-axis correspond to standard nomenclature: delta, theta, alpha, beta and gamma.  
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3.2 Distinguishing electrophysiological states of 

arousal and valence with the ANEW task 

The two panels below (Figure 2) summarize the 

frequency band analysis for examining arousal and 

valence using the ANEW task.  We plotted the means 

of the frequency band amplitude, measured in 

microvolts (µV) averaged across participants and 

electrodes.  Figure 2A displays the comparison 

between high and low arousal states using the Brain 

Vision system and the Epoc system. A two-way analysis 

of variance revealed that the observed differences in 

the arousal condition (high arousal vs. low arousal) was 

not statistically significant for the Brain Vision system 

(F (1,31) = 0.085; p = 0.772) nor the Epoc system (F 

(1,13) = 7.185, p = 0.019); differences in frequency 

band (Delta, Theta, Alpha, Beta, Gamma) were 

significant for the Brain Vision system only (F (1,31) = 

34.156, p < 0.01); and the interaction between arousal 

condition and frequency was significant for the Brain 

Vision system (F (1,31)  = 53.339, p < 0.01) but not the 

Epoc system (F (1,13) = 2.191, p = 1.54). Figure 2B 

displays the high and low valence states using the Brain 

Vision and Emotiv system.  A two-way analysis of 

variance revealed that the observed differences in 

condition (high valence vs. low valence) was not 

statistically significant for either system; differences in 

frequency band (Delta, Theta, Alpha, Beta, Gamma) 

were significant for the Brain Vision system only (F 

(1,31) = 26.690, p < 0.01); and the interaction between 

valence condition and frequency was significant for the 

Brain Vision system only (F (1,31)  = 40.048, p < 0.01). 

 

3.3 Alerting correlations of Epoc and BV 

Correlational data (Table 1 & 2) below provided some 

alerting trends among the different systems and tasks. 

Here we used the approach outlined by Rosnow, 

Rosenthal, and Rubin (2000) which describes the use of 

leveraging aggregate correlations of group means 

rather than individual scores for identifying overall 

trends and assessing validity [15]. Using this alerting 

correlation method, we identified trends among ERBP 

and the different task conditions. In both Table 1 and 

Table 2 it can be noted that the Epoc ERBP has a very 

poor and often inverse relationship to that of the BV 

which questions the validity of the Epoc.  

 

4. DISCUSSION & CONCLUSIONS 

The results of this preliminary study suggest that the 

wireless 14-electrode Epoc system can be used to 

show small differences in general electrical activity 

between psychophysiological states of high and low 

arousal, and high and low valence (particularly in the 

delta, theta, and alpha frequency ranges). The 

observed differences, however, are not statistically 

significant such as with the stationary Brain Vision 

device. Therefore, the use of the Epoc device lacks the 

degree of fidelity that is required to properly 

distinguish these states within a personalized design 

which would be very undesirable in a research setting. 

The findings offer evidence against the validity of 

consumer-grade systems for research grade tasks, 

although their low fidelity ability to distinguish states 

may still be useful for some EEG-based BCI 

applications. The Epoc, and similar consumer-grade 

devices with a limited number of electrodes could be 

strongly improved simply by designing a product which 

adheres to conventional EEG electrode placement. 

Using the common electrode placements would lead to 

improved comparative capabilities with traditional EEG 

devices/existing EEG studies, better-referencing 

montages, and increased translatability of anatomically 

related conclusions.  

 

During the ANEW and IAPS tasks whereas the Brain 

Vision system detected high levels of gamma 

frequency band activity, the Epoc system consistently 

failed to replicate this finding.  We hypothesize that 

this difference can be attributed to technical aspects of 

the 14-electrode setup such as the lack of a signal 

amplifier. The Brain Vision system uses an ActiChampTM 

signal amplifier which enables it to detect higher 

frequencies of electrophysiological activity—higher 

beta oscillations and gamma oscillations. In contrast, 

the Epoc wireless headset transmits 

electrophysiological recordings directly from the scalp 

to a USB-A dongle in the signal processing computer.  
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Table 1. Alerting Pearson Correlations of ERBP for each condition and EEG system (Brain Vision, BV, vs. Epoc 

Emotiv) using the IAPS Task. 

 

  
EEG 

Frequency  

Epoc Low 
Arousal 

Epoc High 
Arousal 

BV Low 
Arousal 

BV High 
Arousal 

Epoc Low 
Valence 

Epoc High 
Valence 

BV Low 
Valence 

BV High 
Valence 

EEG 
Frequency  

 1 
        

 
         

Epoc Low 
Arousal 

 -.887* 1 
       

 
(0.045) 

        

Epoc High 
Arousal 

 -.930* .946* 1 
      

 (0.022) (0.015) 
       

BV Low 
Arousal 

 0.658 -0.468 -0.586 1 
     

 
(0.227) (0.427) (0.299) 

      

BV High 
Arousal 

 0.666 -0.489 -0.624 .995** 1 
    

 (0.219) (0.403) (0.260) (0.000) 
     

Epoc Low 
Valence 

 -.881* .992** .908* -0.412 -0.423 1 
   

 
(0.048) (0.001) (0.033) (0.491) (0.478) 

    

Epoc High 
Valence 

 -.923* .989** .983** -0.548 -0.575 .967** 1 
  

 (0.025) (0.001) (0.003) (0.339) (0.310) (0.007) 
   

BV Low 
Valence 

 0.553 -0.297 -0.471 .975** .974** -0.231 -0.400 1 
 

 
(0.334) (0.627) (0.423) (0.005) (0.005) (0.708) (0.505) 

  

BV High 
Valence 

 
0.523 -0.252 -0.449 .954* .958* -0.180 -0.364 .996** 1  

(0.366) (0.683) (0.448) (0.012) (0.010) (0.772) (0.548) (0.000) 
 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

1 Exact P-Values for correlations are in parentheses.  

 

 

This interface for amplifying signals may be in part 

responsible for making higher beta and gamma 

oscillations harder to detect. A more sophisticated 

amplification would drastically improve the signal 

quality of consumer devices, but the cost required to 

do so would not be consumer friendly.  

 

For the ANEW task, differences in frequency band 

amplitude between high and low valence states were 

not significant, whereas the interaction between 

valence condition and frequency was significant. This 

discrepancy is likely due to the close proximity of the 

emotion-evoking ratings in the high valence and low 

valence conditions.  Future studies should examine this 

result using a greater difference between the mean 

rating of the words used in the two conditions of the 

ANEW task.  

 

In conclusion, we demonstrate further evidence for a 

consumer EEGs’ inability to reproduce differences that 

are distinctly obtainable using a research EEG device 

[16]. We were able to demonstrate this with a small 

number of subjects by using the statistical technique of 

Vincentization. Given that the goal of most emerging 

approaches using EEG-based machine learning and 

categorization algorithms is ultimately intended for 

personalized individual consumer use, the fact that the 

present perspective focused on a demonstration based 

on a small sample size cannot be considered as a major 

limitation. The experiment was done at the same grade 

(scale) as that of the intended consumer usage: in 

other words, it focusses on usability in one person, not 

groups of people. 
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Overall, we urge caution to researchers planning to use 

a consumer device for important research experiments 

but do acknowledge that devices like the Emotiv have 

some benefits such as being wireless, quick to set up, 

are extremely portable, and could still be useful in 

some BCI applications where signal quality and validity 

are not paramount. For instance, exerting BCI control 

over an external device (i.e. wheelchair, prosthetic 

arm) can be done by calibrating any signal to a function 

of the device (i.e. move forward, backward, side to 

side, extend/retract reach). 

 

Table 2. Alerting Pearson Correlations of ERBP for each condition and EEG system (Brain Vision, BV, vs. Epoc 

Emotiv) using the ANEW task.  

 

  
EEG 

Frequency  

Epoc Low 
Arousal 

Epoc High 
Arousal 

BV Low 
Arousal 

BV High 
Arousal 

Epoc Low 
Valence 

Epoc High 
Valence 

BV Low 
Valence 

BV High 
Valence 

EEG 
Frequency 
 

 
1 

        

 
         

Epoc Low 
Arousal 

 
-0.799 1        

 
(0.105)         

Epoc High 
Arousal 

 
-0.809 .992** 1       

 
(0.098) (0.001)        

BV Low 
Arousal 

 
0.444 0.099 0.134 1      

 
(0.454) (0.874) (0.830)       

BV High 
Arousal 

 
0.682 -0.241 -0.202 .932* 1     

 
(0.205) (0.696) (0.745) (0.021)      

Epoc Low 
Valence 

 
-0.811 0.790 0.856 0.040 -0.234 1    

 
(0.096) (0.112) (0.064) (0.949) (0.704)     

Epoc High 
Valence 

 
-.912* .928* .958* -0.037 -0.329 .926* 1   

 
(0.031) (0.023) (0.010) (0.953) (0.589) (0.024)    

BV Low 
Valence 

 
0.424 0.124 0.159 .992** .901* 0.083 -0.020 1  

 
(0.477) (0.842) (0.798) (0.001) (0.037) (0.894) (0.975)   

BV High 
Valence 

 
0.431 0.124 0.152 .997** .928* 0.021 -0.025 .982** 1 

 
(0.469) (0.843) (0.807) (0.000) (0.023) (0.973) (0.968) (0.003)  

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
1 Exact P-Values for correlations are in parentheses.  
  

 

Notice, in this example the ability for the BCI to 

differentiate valence/arousal emotional states is not 

necessary. In this case, the goal is to make the system 

successfully work for the user, not to produce valid 

signatures of emotion. On the other hand, if the goal of 

a study has anything to do with emotional states, like 

using an Epoc to investigate clinical neuropsychiatric 

populations for emotional dysregulation in mood 

disorders or any cognitive neuroscience experiment of 

emotion in which you need to be confident in the 

validity of your signal, the consumer-grade devices 

must be cautioned against. Therefore, we argue that 

the issue is not so much that consumer devices have 

no place in the research laboratory, but rather that 

their use and data interpretation need to be done 

appropriately in contexts in which they are valid. Upon 

this investigation, using an Epoc EEG device to 

determine emotional states in individuals would have 

questionable validity as it is not reproducible using 

research grade EEG. The validity should not be 

assumed as simply coming in a box, together with the 

device! 
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Supplementary Materials: Additional information regarding 

the EEG signal processing are available online at 

https://doi.org/10.31117/neuroscirn.v2n1.21.  

 

Acknowledgements: This work was funded by a NSERC/DND 

partnership grant (Natural Sciences and Engineering 

Research Council and Department of National Defense of 

Canada) awarded to AD. No funds were received for 

covering the costs to publish in open access.  

Author Contributions: DMB and JG contributed equally to 

this paper and were responsible for performing analysis of 

data and the writing of the paper. AD conceived, designed, 

and oversaw the experiments, and revised and edited the 

paper. JG and other assistants performed the experiment.  

 

Conflicts of Interest: The authors declare no conflict of 

interest.

 

References 

1. Lin Y-P, Wang C-H, Jung T-P, Wu T-L, Jeng S-K, Duann J-R, et al. EEG-based emotion recognition in music listening. IEEE 

Trans Biomed Eng. 2010;57(7):1798-1806. https://doi.org/10.1109/TBME.2010.2048568 

2. Ross W, Morris A, Ulieru M, Guyard AB. RECON: An Adaptive Human-Machine System for Supporting Intelligence 

Analysis. Nat Genet. 2013;45(10):1109. https://doi.org/10.1109/smc.2013.138 

3. Maskeliunas R, Damasevicius R, Martisius I, Vasiljevas M. Consumer-grade EEG devices: are they usable for control tasks? 

PeerJ. 2016;4:e1746. https://doi.org/10.7717/peerj.1746 

4. Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T. Performance of the Emotiv Epoc headset for 

P300-based applications. Biomed Eng Online. 2013;12:56. https://doi.org/10.1186/1475-925X-12-56 

5. Messer SC, Angold A, Costello EJ. Development of a short questionnaire for use in epidemiological studies of depression 

in children and adolescents: Factor composition and structure across development. Int J Methods Psychiatr Res, 

1995;5:251-262. 

6. Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Technical manual and affective ratings. 

Psychology. 1997;77. 

7. Lang PJ, Greenwald MK, Bradley MM, Hamm AO. Looking at pictures: affective, facial, visceral, and behavioral reactions. 

Psychophysiology. 1993;30(3):261–273.  https://doi.org/10.1111/j.1469-8986.1993.tb03352.x 

8. Scott GG, O'Donnell PJ, Leuthold H, Sereno SC. Early emotion word processing: evidence from event-related potentials. 

Biol Psychol. 2008;80(1):95-104. https://doi.org/10.1016/j.biopsycho.2008.03.010 

9. Kassam KS, Markey AR, Cherkassky VL, Loewenstein G, Just MA. Identifying Emotions on the Basis of Neural Activation. 

PLoS ONE. 2013;8(6):e66032. https://doi.org/10.1371/journal.pone.0066032 

10. Bradley MM, Lang PJ. Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical 

Report C-1, The Center for Research in Psychophysiology. University of Florida. 1999. 

11. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based 

positioning systems. Neuroimage. 2007;34(4):1600-1611. https://doi.org/10.1016/j.neuroimage.2006.09.024 

12. Hilgard, ER (1951). Methods and procedures in the study of learning. In Stevens, SS (Ed.) Handbook of experimental 

psychology. New York, Wiley, p.517-567.  

13. Genest C. Vincentization Revisited. The Annals of Statistics. 1992;20(2):1137. https://doi.org/10.1214/aos/1176348676 

14. Vincent SB. The functions of the vibrissae in the behavior of the white rat. Behavior Monographs. University of Chicago.  

1912;5(1). 

15. Rosnow RL, Rosenthal R, Rubin DB. Contrasts and correlations in effect-size estimation. Psychol Sci. 2001;11(6):446-453. 

https://doi.org/10.1111/1467-9280.00287 

16. Nijboer F, van de Laar B, Gerritsen S, Nijholt A, Poel M. Usability of Three Electroencephalogram Headsets for Brain-

Computer Interfaces: A Within Subject Comparison. Interact Comput. 2015;27(5):500. 

https://doi.org/10.1093/iwc/iwv023 

https://doi.org/10.31117/neuroscirn.v2n1.21
https://doi.org/10.1109/TBME.2010.2048568
https://doi.org/10.1109/smc.2013.138
https://doi.org/10.7717/peerj.1746
https://doi.org/10.1186/1475-925X-12-56
https://doi.org/10.1111/j.1469-8986.1993.tb03352.x
https://doi.org/10.1016/j.biopsycho.2008.03.010
https://doi.org/10.1371/journal.pone.0066032
https://doi.org/10.1016/j.neuroimage.2006.09.024
https://doi.org/10.1214/aos/1176348676
https://doi.org/10.1111/1467-9280.00287
https://doi.org/10.1093/iwc/iwv023

