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Abstract: Establishing experimental models to study neuropathic pain has been challenging due to
the complex mechanism underlying the condition. Although in vivo models have been useful in the
observation of behavioural pain responses, it should be acknowledged that species-to-species
variance can lead to differences in terms of molecular mechanism and genetic expression. The
study of molecular and signal transduction of neuropathic pain using in vivo models faces
limitations due to ethical considerations involving pain induction in animals and the intricacy of
molecular interactions in the pathophysiology of the condition. Hence, developing relevant in vitro
models to study neuropathic pain is important, as it considers the physiological microenvironment
and reduces the use of experimental animals. Several considerations should be taken into account
in developing an in vitro model of neuropathic pain, including the use of either primary culture of
cell lines with considerations to their origins; human or animal, the method of neuropathic pain-
like induction and the relevant assays to assess pain. This review recapitulates previous research
employing in vitro models in investigating the molecular mechanism of neuropathic pain,
intending to provide an alternative to the growing concerns on in vivo neuropathic pain models.

Keywords: neuropathic pain; in vitro; receptors; inflammatory mediators;

©2022 by Mohammed Izham et al., for use and distribution in accord with the Creative Commons Attribution
(CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original author and source are
credited.



mailto:enoch@upm.edu.my
https://doi.org/10.31117/neuroscirn.v5i3.144
https://creativecommons.org/licenses/by-nc/4.0/

1.0 INTRODUCTION

Neuropathic pain is described as a painful sensation
that is due to a lesion or disease of the somatosensory
system (“IASP_Terminology - IASP,” 2017). The
prevalence of neuropathic pain within the global
population was estimated at 7-10% (van Hecke et al,,
2014). Current treatment of neuropathic pain involves
tricyclic antidepressants such as amitriptyline,
gabapentin and serotonin-noradrenaline reuptake
inhibitors (SNRI) such as duloxetine, whereby these
treatments manage to attenuate neuropathic pain
symptoms but tend to cause adverse and side effects
(Nishikawa & Nomoto, 2017). The management of
neuropathic pain conditions is complex, and
treatments are not a cure-all. The complex mechanism
which underlies the pathophysiology of neuropathic
pain involves various inflammatory mediators and
changes in receptors and signalling molecules
(Finnerup et al., 2021).

The study on neuropathic pain remains ambiguous
relative to the pathophysiology and possible remedy in
alleviating neuropathic pain. Neuropathic pain studies
involving humans are ethically and practically
challenging; thus, several in vivo, in vitro and ex vivo
models are commonly used to mimic similar conditions
or symptoms of neuropathic pain (Hattangady &
Rajadhyaksha, 2009; Sousa et al., 2016; Wang & Wang,
2003). These neuropathic pain models demonstrated
representative behaviour responses aligned with the
pathophysiology of neuropathic pain (Gregory et al,,
2013). Although limitations of these models have been
addressed involving the observation of adverse and
side effects due to species differences, the
establishment of animal and cell culture models of
neuropathic pain serves as a noteworthy tool in
defining the pathophysiology (Mogil, 2009). In
addition, the knowledge of establishing neuropathic
pain models allows the development of clinically
efficacious pain prophylactics.

2.0 THE VIRTUE OF EMPLOYING /N VITRO MODEL IN
NEUROPATHIC PAIN STUDY

Among the experimental models employed in
neuropathic pain studies, in vivo model of neuropathic
pain is widely used to understand the pain behaviour
of the condition. For instance, the commonly used
animal models are the chronic constriction injury (CCl)
induced neuropathic pain model, spinal nerve injury
(SNI) model and spinal nerve ligation (SNL) model, as
well as a streptozotocin-induced model as diabetic-
induced neuropathic pain model (Challa, 2015;
Kaliyaperumal et al., 2020; Sambasevam, 2018). These

animal models rely on the induction of central or
peripheral nerve damage through drugs to mimic
similar conditions observed in humans.

The development and perpetuation of neuropathic
pain are modulated by peripheral and central
sensitisation. In general, neuronal sensitisation occurs
when the neuronal sensitivity is altered due to various
mechanisms. Peripheral sensitisation is distinguished
by the abnormal sensitivity of afferent nociceptors to
stimuli due to the effect of inflammatory mediators,
ectopic discharges arising from dorsal root ganglion
and ephaptic transmission from neighbouring
uninjured nerve fibres (Cohen & Mao, 2014; Dureja et
al., 2017). At the cellular level, the transmission of pain
signals is regulated by the ion channels, protein
kinases, receptors and neurotransmitters. The action
of inflammatory cytokines and chemokines will alter
the expression of receptors and ion channels and the
degeneration of nerve fibres, consequently bringing
about neuronal hyperexcitability (Meacham et al.,
2017).

Following the intense signals from the peripheral
neurons, the central neurons within the brain and
spinal cord will be sensitised to the signals—the central
sensitisation results in the abnormal response to
normal and low-threshold stimuli. Similar to the
condition in peripheral sensitisation, alterations of the
expression of ion channels and receptors occur, and
changes in synapse and the release of
neurotransmitter takes place coupled with the
presence of pain-promoting mediators released by the
microglial cells. This intensifies pain perception (Gwak
& Hulsebosch, 2011; Meacham et al., 2017).

The involvement of ion channels, receptors,
neurotransmitters, cytokines and other signalling
molecules in the mechanism of neuropathic pain has
contributed to the challenge of alleviating the
condition. Current therapeutic approaches are mostly
limited to symptom management, with considerably
fewer approaches targeting the mechanism.

2.1 Ethical considerations of pain induction in
animals

Behavioural parameters, such as the presence of
allodynia and hyperalgesia, were used as indicators of
neuropathic pain in animal studies. However, the
usage of animal models has ethical concerns due to the
pain being imposed on the animals (Table 1).
Furthermore, molecular and signal transduction study
of neuropathic pain through in vivo models faces
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limitations due to the intricate systems and
interactions of intercellular signalling molecules
(Hattangady & Rajadhyaksha, 2009). Hence, having in
vitro models helps study the crosstalk of molecular
signalling and reduces animal usage. Additionally, in
vitro models can provide fundamental and preliminary
data on the action of a particular compound or
treatment target. The employment of in vitro models
in this research area enables the diminution of inflated
usage for in vivo models.

Table 1. In vivo models of neuropathic pain with the
respective type of injury.

Model Type of injury

Chronic constriction injury

(CCl)-induced neuropathy MR IR

o Nerve ligation
e Mechanical compression
of the nerves

Spinal nerve injury (SNI)-
induced neuropathy

e Mechanical compression
of the nerves
e Nerve transection

Peripheral nerve injury-
induced neuropathy

Diabetes-induced
neuropathy

e Streptozotocin induction
e Genetic models

e Chemotherapeutic drugs
(oxaliplatin, cisplatin)

e Antiretroviral drugs
(didanosine)

Drug-induced neuropathy

Inflammation-induced pain
(zymosan-induced
inflammation on the sciatic
nerve)

Sciatic inflammatory
neuritis

e Genetic models
e HIV-gp120-induced
neuropathy

Human immunodeficiency
virus (HIV)-induced
neuropathy

Chronic ethanol exposure

Alcoholic neuropathy through diets

3.0 PRIMARY CELL CULTURE AND TRANSFORMED
CELL LINES

The use of in vitro models varies depending on the cell
function to be studied and the cell culture type
employed. There are two major cell culture types—
primary and transformed cell lines. Primary cell culture
involves acquiring the cells and culturing them under
the optimum condition without modification to the
cells (Stacey, 2006). On the other hand, the

development of transformed cell lines encompasses
the alterations of genotype, enhancing the growth
properties and immortalising the cells (Dave et al,
2020; Geraghty et al., 2014). The use of primary cell
culture and transformed cell lines will be further
described in the context of neuropathic pain and its
conditions.

3.1 Primary cell culture

Primary cell culture is commonly employed in research
to retain the cell’s original structure and physiology
(Gordon et al., 2013). Primary cells are dorsal root
ganglia (DRG) neurons, Schwann cells, neural crest
cells, cortical neurons and human embryonic stem cells
(Berta et al., 2017; Hattangady & Rajadhyaksha, 2009;
Jones et al., 2018).

3.1.1 Dorsal root ganglia (DRG) neurons

Neuropathic pain pathophysiology involves both
central and peripheral sensitisation. Dorsal root ganglia
(DRG) play an important role in mediating peripheral
sensitisation due to its neuronal formation. The DRG
encompasses the sensory, motor, and autonomic
nerves, surrounded by glial cells. Dorsal root ganglia
were observed to serve as an excellent translational
model for neuropathic pain because it contains large
populations of sensory neurons (Melli & Hoke, 2009).
This is essential as most neuropathic pain patients
exhibit sensory symptoms such as hyperalgesia and
allodynia. These painful symptoms are also commonly
reflected in neuropathic pain animal models (Chia et
al., 2020). DRG neurons have diversified morphology
and functions responsible for pain signal transduction
and modulation (Berta et al., 2017). These neurons
express various ion channels and receptors, which
modulate pain signal transmission and modulation. The
alterations were commonly observed in the transient
receptor potential channels (TRP), voltage-gated ion
channels, glutamate, and ATP-sensitive receptors
(Krames, 2014). In addition to the morphological and
protein expression analysis, DRG neurons were also
employed in studies associated with the
pathophysiology of ion channels (Barkai et al., 2017;
Chung & Chung, 2002).

Most experiments utilised DRG neurons from rodents
since human DRG is unattainable (Qi et al., 2011,
Vysokov et al., 2019). To mimic the neuropathic pain-
like condition, DRG neuronal cultures were subjected
to axotomy, cultured in high glucose medium or
induced with oxidative agents and virus (Fernyhough et
al., 2003; Jones et al., 2018; Vysokov et al., 2019). In
several neuropathic pain studies, morphological and
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molecular assays were performed on DRG neuronal
cultures to complement the findings of neuropathic
pain tests on animals (Chen et al., 2017; Eldridge et al.,
2019). Furthermore, DRG neuronal culture is
commonly co-cultured with glial cells, such as Schwann
cells and satellite glial cells, which may explain the
neuron-glia crosstalk underlying the pathophysiology
of neuropathic pain (lzzi et al., 2018). Notwithstanding,
the primary culture of DRG neurons has limitations as
it is prone to damage due to the loss of adherent
properties and low purity due to contamination by
Schwann cells and fibroblasts. Besides, mature DRG
neurons do not proliferate after extraction,
contributing to the lower yield obtained (Shen et al.,
2019).

3.1.2 Human embryonic stem cells (hESCs)

More recent studies have shown the potential of
human embryonic stem cells (hESCs) as an in vitro
model to study neuropathic pain (Chen et al., 2019;

also shown that the induction of sensory neurons from
hESCs requires some growth factors, neurotrophic
factors and signalling molecules. It is also important to
note that the neuronal differentiation of hESCs entails
characterisation for nociceptor or sensory phenotype
as the differentiated cell culture may consist of cells
that do not express neuronal morphology.

3.1.3 Schwann cells

Neuropathic pain development and maintenance do
not only involve the alterations of the peripheral and
central nerves. Within the peripheral nerve system,
Schwann cells are one of the prominent glial cells
which modulate neuropathic pain pathophysiology
(Wei_et al., 2019). Research has shown that in
neuropathic pain conditions, Schwann cells displayed
changes in morphology and activation of their cells
following nerve injury and upregulation of several pro-
inflammatory cytokines and chemokines (Wei et al.
2019). Moreover, Schwann cells were observed to

Hattangady & Rajadhyaksha, 2009; Jones et al., 2018;
Srinivasan & Toh, 2019). Human embryonic stem cells
have been used in studies related to peripheral
neuropathic pain due to their ability to be
differentiated into physiologically functioning sensory
neurons to study peripheral neuropathic pain (Jones et
al., 2018). It has been observed in several studies that
the induction of neuronal differentiation on hESCs
produced sensory neuronal cells that express relevant
ion channels, which are also expressed in DRG
neuronal cells (Jones et al., 2018; Meyer & Kaspar,

express modulatory receptors, such as P2X4 receptors,
a potential target for attenuation of pain signal
transmission (Su et al., 2019).

Schwann cells used in neuropathic pain studies were
often acquired from rodents or induced through
differentiation from precursor cells, followed by the
induction with oxidative agents, chemotherapy drugs,
or cultured in a high-glucose medium to mimic
neuropathic pain pathophysiology (Imai et al., 2017;
Liu et al., 2016; Su et al., 2019). Common observation

2014). Moreover, the electrophysiological analysis also
shows that the differentiated neuronal cells exhibit
functioning ion channels responsible for nociceptive
signal modulation (Lee et al.,, 2012; Meyer & Kaspar,
2014). The differentiated neuronal cells responded
toward the induction of ATP and capsaicin, further
supporting the development of sensory neuron
characteristics (Lampert et al., 2020). Several neuronal
differentiation methods were identified. For instance,
hESCs was differentiated through a combination of
dual-SMAD inhibition and early WNT activation
coupled with small-molecule inhibition of Notch,
vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF) and platelet-derived growth factor
(PDGF) signalling pathways (Chambers et al., 2013;
Jones et al., 2018).

Despite retaining human genetic features and
exhibiting functioning sensory neurons, hESCs cultures
require a long time to develop and differentiate before
being subjected te downstream experiments (Meyer &
Kaspar, 2014; Young et al., 2014). Similar research has

discerned in Schwann cell culture includes the viability
of the cells, the expression of neuropathic-pain-related
receptors, the production of inflammatory cytokines
and chemokines, the morphology of the cells in regards
to their polarity and the formation of the myelin
sheath (Imai et al., 2017; Liu et al., 2016; Logu et al.,
2019). Similarly, as it has been reported in sensory
neuronal culture derived from hESCs, the
differentiation of Schwann cells requires a number of
growth and differentiating agents and a long period of
cell differentiation. The differentiated precursor cells
also require characterisation and culture purity
validation following differentiation (Kim et al., 2020).
3.2 Transformed cell lines

Apart from primary cell culture, transformed cell lines
are also used to establish in vitro models of
neuropathic pain. Cell lines are preferred due to their
high proliferative rate, allowing a continuous supply of
cells and convenient culture, unlike primary cell
culture, which usually requires the addition of several
growth and neurotrophic factors in the culture media
(Stacey, 2006). Commonly used cell lines are neuronal
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cell lines, Schwann cell lines and microglial cells, which
are sourced from humans or rodents.

3.2.1 SH-SY5Y cells

The commonly used neuronal cell line is the SH-SY5Y
cells, a human neuroblastoma cell line (ATCC 2266™).
SH-SY5Y cells were first discovered in 1970, derived
from a metastatic bone tumour biopsy, SK-N-SH cell
line. SH-SY5Y cells are widely used as it exhibits
noradrenergic, dopaminergic and cholinergic
properties, and the cell line has been regarded as the
gold standard for neuronal cell culture in neurobiology
research (Murillo et al., 2017). Upon differentiation
with brain-derived growth factors (BDNF) and/or
retinoic acid, SH-SY5Y cells express functional
receptors, ion channels and neurotransmitters
involved in signal transmission (Xicoy et al., 2017; Yin
et al., 2016). The cells have been reported to express
opioid receptors, transient receptor potential cation
channel subfamily V member 1 (TRPV1), N-methyl-D-
aspartate (NMDA) receptors, GABA receptors and
alpha adrenergic receptors, by which these receptors
play a significant role in the development and
maintenance of neuropathic pain (Chia et al., 2020;
Forrest et al., 2017; Kovalevich & Langford, 2013;
Nopparat et al., 2017; Rohm et al., 2018). SH-SY5Y cells
were also subjected to other differentiation methods
and agents, such as serum deprivation, treatment of
phorbol esters and dibutyryl cyclic AMP to induce
neurite extension and branching and the expression of
specific neuronal properties (Kovalevich & Langford,
2013).

Furthermore, the induction of neuropathic pain-like
condition on SH-SY5Y cell culture has resulted in
changes in the expression of inflammatory proteins
and signalling molecules, namely TLR receptors,
interleukins, NFkB and nitric oxide (Amine et al., 2021;
Kaswan et al.,, 2020; Lawrimore & Crews, 2017). SH-
SY5Y cells are also commonly co-cultured with
microglial cell lines to study the neuron-glial
interaction in chronic pain mechanisms (Anand et al.,
2015; Pandur et al., 2018). Although SH-SY5Y cells have
been utilised as the gold standard model in
neurobiology research, cell differentiation and
appropriate markers are pertinent to ensure functional
proteins and signalling molecules associated with
neuropathic pain mechanism are expressed (Encinas et
al., 2000; Teppola et al., 2016).

3.2.2 Neuro-2a cells
Another example of tumour-derived cell lines is the
Neuro-2a cells, a mouse neural-crest-derived cell line

(ATCC 131™). Established in 1969, Neuro-2a cells have
been used as an in vitro peripheral nerve model as it
expresses dopaminergic and glutamatergic properties
and potassium channels upon differentiation (Elmann
et al., 2017; Pousinha et al.,, 2017; Tremblay et al.,
2010). These characteristics are crucial for the study of
molecular mechanisms of neuropathic pain. However,
despite the convenience in cell culture and
differentiation, it is important to acknowledge that
Neuro-2a cells are of the neuroblastoma cell line, and
the cells may possess species variance as they are
derived from mice.

3.2.3 Schwann cell lines

Like the primary cultures, Schwann cell lines have been
established for use in studies on neuropathic pain.
Schwann cell lines are preferred to primary cell culture
due to low vyield upon isolation, caused by
contamination of connective tissues and fibroblasts
(Sango et al., 2011). Established Schwann cell lines are
the S16 and IMS32, derived from the rat sciatic nerve
and dorsal root ganglion of adult mice, respectively
(Sango et al., 2011; Tsukahara & Ueda, 2016). The cells
express distinct mature Schwann cell morphology and
secrete glial cell markers such as glial fibrillary acidic
protein, neurotrophic factors and nerve growth
factors, which closely resemble primary culture
(Hattangady & Rajadhyaksha, 2009).

3.2.4 Considerations of employing transformed cell
lines

Regardless of the tumour cell lines acquired from the
human or murine origin, this type of cell line may not
concur with normal primary cells. The tumour cell lines
may possess altered genotypes, occasionally
expressing unique genetic sequences, resulting in
phenotypes that are inapposite to normal cell
physiology (Carter et al., 2015). For instance, the
differences could lie in the genetics or physiological
function of the receptors (Kaur & Dufour, 2012). These
characteristics may further be varied as the cells
undergo sub-culturing or passaging due to the dynamic
and evolvable properties of cancerous cells (Greaves &
Maley, 2012). Moreover, it is important to note the
results of the immortalisation method in several
neuronal cell cultures had caused an increased in the
differentiation capacity and the occurrence of
spontaneous differentiation (Magsood et al., 2013).
Thus, periodical validation is necessary in the
employment of cells with increasing passage numbers.
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4.0 INDUCTION OF NEUROPATHIC PAIN-LIKE
CONDITION AND CORRESPONDING BIOLOGICAL
ASSAYS

Neuropathic pain could result from viral infections like
HIV and shingles, trauma, treatment of drugs and
diseases like diabetes mellitus (Alles & Smith, 2018;
Colloca et al., 2017). As discussed previously, the
pathophysiology of neuropathic pain is comprised of a
number of mechanisms such as the build-up of
oxidative stress, change in inflammatory mediator
expression, alteration of receptors and ion channels’
expression, as well as a change in neuron-non-
neuronal cells interaction (Alles & Smith, 2018; Colloca
et al., 2017; Finnerup et al., 2021). The mechanism
underlying the induction of neuropathic pain-like
symptoms differs among the in vivo models. The CCI
animal model, for example, exemplifies peripheral
neuropathic pain, while Allen’s model mimics central
neuropathic pain through spinal cord injury (Jaggi et al,
2011). Thus, the primary molecular mechanisms and
induction factors are important in mimicking
neuropathy in vitro.

4.1 Chemotherapy-Induced neuropathic pain
condition

Patients  undergoing chemotherapy reportedly
experience neuropathic pain symptoms, although they
have completed successful cancer treatments (Eldridge
et al., 2019). Antineoplastic drugs have been observed
to be effective in targeting cancerous cells, and these
drugs have shown adverse effects on healthy normal
cells, such as damaging nerve cells (Zajgczkowska et al.,

such as neurite outgrowth, presence of neurofilament,
cell viability and mitochondria activity via ATP
production (Lehmann et al., 2020).

4.2 Diabetic-induced neuropathic pain condition
Another leading disease that leads to the development
of neuropathic pain is diabetes mellitus. Diabetic
patients experience hyperalgesia at moderate to
severe intensity, whereby the symptoms are
commonly felt in their legs (Colloca et al., 2017; Jay &
Barkin, 2014). The pathophysiology of diabetic
neuropathy was proposed to encompass the alteration
of blood vessels and blood supply to peripheral nerves,
dysregulation of ion channels’ expression, change in
the descending inhibitory pain pathway and activation
of glial cells associated with autoimmune disorders
(Schreiber et al., 2015).

Diabetic neuropathy is mainly due to hyperglycaemia.
Hence, high glucose treatment has been used to mimic
neuropathic pain conditions in vitro models as it leads
to several downstream mechanisms, such as glucose
auto-oxidation. This leads to an increase in the
production of reactive oxygen species, which results in
neural dysfunction and neuronal apoptosis (Afrazi et
al., 2014; Hattangady & Rajadhyaksha, 2009; Kaeidi et
al., 2011). Aside from hyperglycaemia, streptozotocin
(STZ) is also used to induce diabetic neuropathy. STZ is
an antimicrobial and chemotherapy agent which brings
about the necrosis of pancreatic [B-cells, causing
hyperinsulinemia and hyperglycaemia (Damasceno et
al., 2014). The development of in vitro model of STZ-

2019). Several chemotherapy agents that cause
chemotherapy-induced peripheral neuropathy are
platinum-based drugs (oxaliplatin), vinca alkaloids
(vincristine), immunomodulatory drugs (thalidomide)
and epothilones (ixabepilone) (Starobova & Vetter,
2017). The neuropathy-causing mechanism of
antineoplastic agents includes damage to sensory
neurons, inhibition of DNA transcription, dysregulation
of ion channels, disruption of mitochondria activities
and inhibition of microtubule formation (Starobova &
Vetter, 2017; Yamamoto & Egashira, 2021). In addition,
these chemotherapy agents affect neuronal
morphology by reducing neurite outgrowth in
response to axonal degeneration (Eldridge et al., 2019;

induced neuropathy is done by injection of STZ into
animals prior to neuronal cell culture. Another
approach to employing STZ to mimic diabetic
neuropathy is directly treating neuronal cell culture
with STZ (Hattangady & Rajadhyaksha, 2009; Sun et al.,
2018).

The parameter observed in the in vitro model of
diabetic neuropathy include the oxidative stress on
neuronal and glial cells. This includes the analysis on
the expression of ion channels and reactive oxidative
species, as well as proteins and signalling molecules
within the oxidation pathway (Gardiner & Freeman,
2016). Electrophysiology of neuronal culture as

Podratz et al., 2016).

Several chemotherapy and other oxidative stress
agents are employed in vivo and in vitro models of
neuropathic pain. The parameters of chemotherapy-
induced neuropathy research usually involve
observation of neuronal and/or glial cell morphology,

hyperglycaemia may alter the expression of ion
channels on neuronal cells. Another hallmark of
diabetic neuropathy is the retraction of neurite
extension, hence this is an important output measure
for the in vitro model (Lu et al., 2019).
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4.3 Lipopolysaccharides-Induced neuropathic pain
condition

Lipopolysaccharides (LPS), found on the outer
membrane of Gram-negative bacteria, is also used to
induce neuropathic pain condition in vitro models. LPS
is not a common trigger of neuropathic pain in clinical
settings. However, induction of LPS triggers various
mechanisms  that mimic neuropathic pain
pathophysiology. Induction of LPS results in an increase
of pro-inflammatory mediators and reactive oxidative
species, which alters the expression of proteins and
signalling molecules underlying the transmission of
pain signals (Pandur et al., 2018). It has been observed
that the treatment of LPS on neuronal and glial cells
upregulates the expression of interleukin 6 (IL-6),
tumour necrosis factor o (TNF-a), vanilloid receptor 1
(TRPV1) and N-methyl-D-aspartate (NMDA) subunit
NR2B (Chia et al., 2020). TRPvl and NMDA N2B
receptors are the leading player underlying
hyperalgesia and allodynia in neuropathic pain
conditions (Carrasco et al., 2018; Chia et al., 2020). In

Another output measure in analysing HIV-induced
neuropathy in the in vitro model is observing neuronal
cell morphology. Induction of gpl120 causes axonal
injury and cutaneous denervation of the neurons (Yuan
et al., 2014; Zhao et al., 2017). Additionally, evidence
has shown mitochondrial damage in patients with HIV-
induced neuropathic pain. Thus, mitochondrial
dysfunction could be an important variable to be
studied in vitro models of HIV-induced neuropathic
pain (Cotto et al., 2019). A number of studies observed
the alterations of neurite outgrowth and changes in
the expression of P2X4 receptors and chemokines
receptors, suggesting these as notable output
measures for the in vitro model (Datta et al., 2019;
Kamerman et al., 2012; Yuan et al., 2014).

5.0 FUTURE PROSPECTS OF IN VITRO MODEL OF
NEUROPATHIC PAIN

Research on developing an in vitro model from human
cortical neurons is currently in progress. Chen et al.
(2019) designed a three-dimensional (3D) cell culture

addition, LPS could also induce changes in reactive
oxidative stress (ROS), a similar condition observed in
chemotherapy-induced and diabetic-induced
neuropathic pain, as previously discussed (Chanchal et
al., 2016; Kaswan et al., 2020). The utilisation of LPS in
inducing neuropathic pain pathophysiology in vitro
model has been considered comprehensive as it can
induce an inflammatory response and alters the
leading players of nociceptive pathways such as the ion
channels and receptors.

4.4 Human Immunodeficiency Virus (HIV)-induced
neuropathic pain condition

Another common aetiology of neuropathic pain is a
viral infection, such as the human immunodeficiency
virus (HIV). HIV has been regarded as a chronic
condition with a significant neurological complication:
distal symmetric polyneuropathy (Schitz & Robinson-
Papp, 2013). Patients with HIV reported symptoms
such as hyperalgesia and allodynia, whereby the
symptoms were reported to be within the neck, joints
and leg area (Addis et al., 2020). The main structure
causing neuropathy was the glycoprotein wrapping the
virus, gp120. Treatment of gpl120 in DRG neuronal
culture resulted in cell lysis (Datta et al., 20019). The
induction of gp120 also activates glial cells, such as
Schwann cells, which further cause an increase in the
expression of pro-inflammatory mediators from both
neuronal and glial cells in a co-culture setting. The
upregulated expression of TNF-o. triggers neuronal
apoptosis due to the neurotoxicity effect (Moss et al.
2015; Zhao et al., 2017).

of human cortical neurons on a polydimethylsiloxane
(PDMS) micropillar surface to mimic the 3D
microenvironment of a brain. The cells were
differentiated into mature neurons, which express
glutamatergic properties. The 3D neuronal culture was
also induced with traumatic brain injury (TBI) through
the weight-dropping method, which increases injury-
induced glutamine, concurring with in vivo chronic pain
models (Chen et al.,, 2019). Another 3D model
identified as having a good prospect is culturing
neuronal and glial cells using capillary alginate gel. The
culture method utilises capillary microarchitecture to
create a 3D cellular culture, which has been proposed
to translate better the nervous system environment
(Anderson et al., 2018).

In vitro models of neuropathic pain could be an ideal
tool to understand the pathophysiology in a controlled
environment. Nevertheless, it is important for
researchers to effectively design the cellular
environment, which may require differentiation of cells
and more comprehensive output measures to observe.
Researchers need to note the limitations of in vitro
models, where additional research from in vivo and
clinical studies is required better to understand the
pathophysiology and possible treatments of
neuropathic pain.
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